Cerium Phosphate as a Novel Cocatalyst Promoting NiCo$_2$O$_4$ Nanowire Arrays for Efficient and Robust Electrocatalytic Oxygen Evolution

Wei Gao,†,‡,§ Wangyan Gou,† Yuanyuan Ma,† Renjie Wei,§,∥ Johnny C. Ho,‡,§,⊥ and Yongquan Qu†

†Center for Applied Chemical Research, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
‡State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
§Department of Materials Science and Engineering and ‡State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
∥Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
⊥Institute of Advanced Electrochemical Energy, Xi’an University of Technology, Xi’an, 710048, China

ABSTRACT: Incorporating electrocatalysts with rare earth elements has attracted increasing attention in electrocatalysis because of its effective modulation of their chemical and electronic structures for enhanced catalytic hydrogen and oxygen evolution reactions. Herein, cerium phosphate (CePO$_4$) is demonstrated to be a novel cocatalyst that significantly enhances the OER performance of NiCo$_2$O$_4$ nanowire arrays on Ni foam. The high durability of OER performance over 1000 h and the low overpotential of 281 mV required to maintain a catalytic current density of 20 mA cm$^{-2}$ can be attributed to the synergetic effect between CePO$_4$ and NiCo$_2$O$_4$. Explicitly, CePO$_4$ as a cocatalyst efficiently tunes the surface states of NiCo$_2$O$_4$ and facilitates water adsorption and the conversion of intermediates, leading to a substantial OER performance enhancement. All results exhibit the potential of integrating CePO$_4$ into NiCo$_2$O$_4$ to improve the water oxidation activity of NiCo$_2$O$_4$ and illustrate wide domains of application by combining rare earth elements into electrocatalysts.

KEYWORDS: electrocatalysis, oxygen evolution reaction, cerium, cocatalyst, CePO$_4$

1. INTRODUCTION

In the past decade, the emission of greenhouse gases and toxic substances, such as carbon dioxide and nitrogen oxides, caused by using fossil fuels has invaded our environment. Since then, harvesting sustainable energy is widely considered to be a critical means to reduce pollution as well as to acquire clean energy. In general, water electrolysis is an important approach to generating high-purity hydrogen as an environmentally friendly fuel for vehicles and power stations and as a chemical raw material for industrial applications and also serves as a promising strategy for converting electricity obtained from renewable energy into storable energy resources.¹⁻³ Nonprecious transition metals are usually considered to be competitive catalyst candidates for overall water splitting because of their advantages in low cost and high abundance.⁴⁻⁷ During the operation of electrochemical water splitting, the oxygen evolution reaction (OER) is an anodic half reaction, which is a complex process that takes place in either acid, neutral, or alkaline solutions. It involves a four-electron procedure with sluggish kinetics on the surfaces of electrodes and requires large overpotentials to initiate the catalytic reaction.⁸,⁹ To promote this slow process, the rational design of electrode materials can facilitate the adsorption of active species, the conversion of intermediates, and the desorption of generated oxygen molecules. Many approaches, including the design of ultrathin two-dimensional materials, the intentional creation of defects and vacancies, the doping of foreign atoms, the coupling with conductive substrates, and building heterogeneous structures with oxygen-favored species, have been developed to accelerate the OER process.¹⁰⁻⁻²⁴ In particular, anchoring cocatalysts on the catalytically active species is broadly regarded as an effective scheme for sensitizing and modulating the catalysts’ activity.²⁵,²⁶ At the same time, because cobalt phosphate with the Co$_3$O$_4$ cubane structure was discovered to be a very efficient OER electrocatalyst in a neutral electrolyte,²⁷ great effort was
devoted to developing transition-metal-based phosphates into high-performance OER catalysts involving manganese, cobalt, nickel, and iron phosphates in either a neutral or alkaline medium. Typically, the phosphate group as a proton acceptor plays an important role in OER by expediting the proton-coupled electron-transfer process between water and the environment. Specifically, Yang et al. demonstrated that phosphate groups located on the perovskite surface could promote the proton transfer process with higher OER kinetics. Furthermore, metal phosphates could also contribute to the locally distorted metal tetrahedral geometry, which favors the adsorption and oxidation of water molecules. For instance, the distorted metal coordination geometry with the longer Co−O and Co−Co distances in cobalt diphosphate was found to significantly enhance the corresponding OER performance with the lower overpotentials required for specific current densities.

Moreover, recent advances have also exhibited the promise and potential of integrating rare earth elements with electrocatalysts for the enhanced hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and other electrocatalytic reactions. Among various rare earth elements, cerium (Ce) and its oxide (CeO₂) have attracted wide interest because of the good exophilicity of Ce in modulating the electronic structures of the host catalysts and the efficient conversion of intermediates to O₂ promoted by CeO₂ with the strong oxygen storage/release capacity in the OER process. respectively. Moreover, cerium phosphate (CePO₄) has recently been proposed to be the catalyst for electrochemical oxygen reduction because of its contribution in providing more Ce³⁺ and oxygen vacancies. Even though Ce-based materials are not very active for OER, they are shown to serve as excellent cocatalysts to enhance the OER performance of electrocatalysts.

Inspired by the above progress, herein we propose the idea of combining the advantages of both Ce and phosphate and demonstrate CePO₄ to be a novel cocatalyst to substantially improve the OER activity of NiCo₂O₄. By simply employing NiCo₂O₄ nanowire arrays directly fabricated on Ni foam as model OER catalysts, coating CePO₄ on the surface of NiCo₂O₄ nanowires can be readily achieved by a facile chemical deposition method. Importantly, a vast improvement in the OER catalytic activity of CePO₄-decorated NiCo₂O₄ nanowire arrays was observed with the much smaller overpotentials of 281 and 349 mV to realize current densities of 20 and 100 mA cm⁻², respectively, as compared to those of 325 and 383 mV for the undecorated counterparts. This OER performance enhancement is mostly attributed to the properly modulated surface states of electroactive Ni and Co sites as well as the benefits of integrating CePO₄ cocatalysts to facilitate the corresponding water adsorption and intermediate conversion during the water oxidation process.

2. EXPERIMENTAL SECTION

2.1. Preparation of CePO₄/NiCo₂O₄

NiCo₂O₄ nanowire arrays were prepared on Ni foam by a hydrothermal method followed by thermal annealing. To be specific, Ni foam with a size of 2 × 3 cm² was first cleaned successively in 10% HCl aqueous solution, deionized water, and ethanol with ultrasonication for 10 min, respectively, and then dried by blowing nitrogen gas. Then, the clean Ni foam was placed in the Teflon-lined stainless-steel autoclave filled with 30 mL of transparent solution containing 0.5 mmol Ni(NO₃)₂·6H₂O, 1 mmol Co(NO₃)₂·6H₂O, 2 mmol NH₄F, and 3 mmol urea. The hydrothermal process was performed in an electrical oven and kept at 120 °C for 6 h. After cooling to room temperature, the obtained precursor-coated Ni foam was washed with ethanol and deionized water alternatively for several cycles and then dried at 60 °C. Afterward, the precursors were annealed in air at 350 °C for 2 h with a temperature ramp of 5 °C/min to obtain NiCo₂O₄ nanowire arrays on Ni foam. To coat the CePO₄ layer, a piece (1 × 3 cm²) of Ni foam was...
supported with NiCo2O4 nanowires was immersed in 10 mL of 0.05 M (NH4)2HPO4·2H2O solution for 30 s and then 10 mL of 0.05 M Ce(NO3)3·6H2O solution for another 30 s to finish one deposition cycle. The loading of CePO4 on NiCo2O4 nanowires was dictated by the number of deposition cycles. Eventually, the obtained electrodes were blown dry with nitrogen gas, followed by drying at 60 °C overnight.

2.2. Preparation of NiCo2O4–Ce3+ and NiCo2O4–PO43−–Ce3+–functionalized NiCo2O4 and phosphate-ion-functionalized NiCo2O4 were prepared by immersing the as-synthesized nanowire arrays in 0.05 M CeCl3 and K3PO4 solutions, respectively, and then dried at 60 °C overnight. A blank sample of NiCo2O4 was also treated in water for another 30 s to fix the CePO4 coating, X-ray diffraction (XRD) patterns were also measured after the decoration of CePO4, the new XRD peaks at 29.2 and 31.4° were indexed to the cubic structure of NiCo2O4 (PDF no. 20-1380) appeared. After the decoration of CePO4, the new XRD peaks at 29.2 and 31.4° were ascribed to the hexagonal CePO4 phase (PDF no. 34-1380) appeared.

3. RESULTS AND DISCUSSION

3.1. Fabrication and Characterization of CePO4/NiCo2O4. As shown in Figure 1a, the NiCo2O4 nanowire arrays fabricated on Ni foam were first prepared by using a facile hydrothermal approach followed by annealing in air to obtain the metal oxide nanowires. CePO4 was then used to decorate the nanowires through a repetitive wet chemical deposition method. Scanning electron microscopy (SEM) images in Figures 1b and S1a revealed the long and vertically aligned NiCo2O4 nanowires. After decorating with CePO4 in three cycles, the obtained electrode displayed a hierarchical network structure with the features of individual NiCo2O4 nanowires wrapped and interconnected with CePO4 nanoparticles (Figures 1c and S1b), suggesting the versatility and reliability of this facile chemical coating method. To further confirm the CePO4 coating, X-ray diffraction (XRD) patterns of both as-synthesized NiCo2O4 nanowires and CePO4-coated NiCo2O4 nanowires (named CePO4/NiCo2O4) were collected (Figure S2). For the NiCo2O4 nanowire electrodes, the dominant peaks at 18.9, 31.1, 36.7, 38.4, 59.1, and 65.0° were indexed to the cubic structure of NiCo2O4 (PDF no. 20-0781). After the decoration of CePO4, the new XRD peaks at 29.2 and 31.4° were ascribed to the hexagonal CePO4 phase (PDF no. 34-1380) appeared.

Next, NiCo2O4 and CePO4/NiCo2O4 were characterized by transmission electron microscopy (TEM). Figure 1d exhibited the typical TEM image of NiCo2O4 nanowires with a diameter of tens of nanometers. Small CePO4 nanoparticles were also confirmed to be deposited successfully on the NiCo2O4 nanowire surface (Figure 1e). Lattice fringes with interplanar...
spacings of 0.245 and 0.305 nm were also observed in the HRTEM image, corresponding to the (311) plane of NiCo₂O₄ and the (200) plane of CePO₄, respectively, suggesting the existence of CePO₄ in CePO₄/NiCo₂O₄ electrodes (Figure 1f). The existence of Ce and P elements in CePO₄/NiCo₂O₄ was also confirmed by elemental mapping (Figure 1g) and X-ray energy-dispersive spectrum (EDS) analysis (Figure S3). Therefore, all of the analyses can evidently confirm the formation of CePO₄ on NiCo₂O₄ nanowire arrays.

In addition, the surface chemical states of both NiCo₂O₄ and CePO₄/NiCo₂O₄ electrocatalysts were analyzed by X-ray photoelectron spectroscopy (XPS, Figure 2a). For Co species, the peaks at ∼780 and 796 eV were ascribed to the oxidized Co species, while those located at ∼787 and 803 eV were assigned to the satellite peaks of oxidized Co species (Figure 2b). It is noted that the Co 2p 3/2 peak in CePO₄/NiCo₂O₄ showed a significant upshift of 0.7 eV in the binding energy when compared to that in NiCo₂O₄, indicating a more positively charged state of Co species in CePO₄/NiCo₂O₄. Figure 2c showed the Ni 2p spectrum of NiCo₂O₄ as well as Ni 2p and Ce 3d spectra of CePO₄/NiCo₂O₄, revealing the presence of Ce in CePO₄/NiCo₂O₄. Also, the Ni 2p 3/2 spectra illustrated the oxidized Ni species with main peaks at about 855.5 eV and satellite peaks at about 861 eV for both NiCo₂O₄ and CePO₄/NiCo₂O₄ (Figure 2d). A similar upshift in the binding energy of Ni 2p of CePO₄/NiCo₂O₄ was also observed with a value of 0.15 eV as compared to that in NiCo₂O₄. Meanwhile, the O 1s spectrum of CePO₄/NiCo₂O₄ exhibited an apparent downshift of about 0.2 eV in the binding energy as contrasted with that of NiCo₂O₄ (Figure 2e). The P 2p spectrum with the peak located at 133 eV was assigned to the phosphate group with P–O bonding in CePO₄/NiCo₂O₄ while there is no signal for the phosphorus element observed for NiCo₂O₄ (Figure 2f). Therefore, the XPS data clearly verified the existence of CePO₄ for the CePO₄/NiCo₂O₄ sample and suggested the properly modulated surface chemical states of NiCo₂O₄ by CePO₄. In particular, the upshifts in the binding energies for Ni and Co and the downshift for O suggest the strong interaction between CePO₄ and NiCo₂O₄ to promote Ni and Co with high oxidation states and O with electron-rich states, which would facilitate the OER process.

3.2. OER Performance of CePO₄/NiCo₂O₄. The electrochemical OER process was recorded in 1.0 M KOH using a three-electrode setup to determine the catalytic performance of both NiCo₂O₄ and CePO₄/NiCo₂O₄. Initially, different loadings of CePO₄ on the CePO₄/NiCo₂O₄ catalysts were evaluated through this chemical deposition with varied cycles. Inductively coupled plasma–mass spectrometry (ICP–MS) was employed to determine the loading amount of CePO₄ in terms of the ratio of Ce/(Ce + Co). As shown in Figure S4, all CePO₄/NiCo₂O₄ electrodes performed better than the
NiCo$_2$O$_4$ sample with the lower overpotentials to drive specific current densities. However, when the loading of CePO$_4$ was too high, it would require larger overpotentials resulting from the blockage of active sites of NiCo$_2$O$_4$ with the excessive CePO$_4$. Therefore, the loading of CePO$_4$ was optimized with three deposition cycles with a Ce/(Ce + Co) ratio of 0.15 in the CePO$_4$/NiCo$_2$O$_4$ electrolyt catalyst, which was utilized for all subsequent electrocatalytic OER studies in this work. As extracted from the polarization curves (Figure 3a), the NiCo$_2$O$_4$ nanowire arrays required an overpotential of 325 mV to obtain a current density of 20 mA cm$^{-2}$. In contrast, the required overpotential was reduced to only 281 mV for CePO$_4$/NiCo$_2$O$_4$. As a control, commercial RuO$_2$ on Ni foam demanded an overpotential of 300 mV to afford a current density of 20 mA cm$^{-2}$ (Figure S5). At a larger current density of 100 mA cm$^{-2}$, an overpotential of 349 mV was demanded for CePO$_4$/NiCo$_2$O$_4$ also being much smaller than that for NiCo$_2$O$_4$ of 383 mV. Moreover, NiCo$_2$O$_4$ delivered a relatively large Tafel slope of 86 mV/dec, while CePO$_4$/NiCo$_2$O$_4$ exhibited a smaller value of 74 mV/dec (Figure 3b). To further evaluate the difference in their catalytic activities, current densities of these two different electrodes at various overpotentials are presented in Figure S6. Specifically, the current density at an overpotential of 375 mV was determined to be 238.6 mA cm$^{-2}$ for CePO$_4$/NiCo$_2$O$_4$, which was 2.9 times higher than that (82.2 mA cm$^{-2}$) for NiCo$_2$O$_4$. Therefore, the performance of CePO$_4$/NiCo$_2$O$_4$ is demonstrated to be much better than that of NiCo$_2$O$_4$ and is also the best among many state-of-the-art nonprecious OER electrocatalysts (Table S1), indicating the extraordinary enhancement effect of CePO$_4$ as a cocatalyst.

To shed light on the actual catalytically active surface area of these electrocatalysts, the double-layer capacitance (C$_dl$), proportional to the electrochemically active surface area (ECSA), was directly measured to evaluate the quantity of the interface active site by ECSA = C$_dl$/C$_c$. C$_c$ is the specific capacitance, which has a typical value of 0.04 mF cm$^{-2}$ in the basic solution. The plots of non-Faradaic capacitive current densities versus different scan rates were also obtained from cyclic voltammetry (CV) curves (Figure S7a,b) for NiCo$_2$O$_4$ and CePO$_4$/NiCo$_2$O$_4$. As given in Figure S7c, the C$_dl$ values of NiCo$_2$O$_4$ and CePO$_4$/NiCo$_2$O$_4$ were determined to be 16.7 and 32.6 mF cm$^{-2}$, respectively, suggesting that more active sites of CePO$_4$/NiCo$_2$O$_4$ were exposed in electrolyte as a result of the surface decoration with CePO$_4$. Similarly, Figure S7d exhibited better catalytic activity for CePO$_4$/NiCo$_2$O$_4$ as compared to that of NiCo$_2$O$_4$ for OER based on the evaluation of their polarization curves with normalization to ECSA, which again demonstrated the enhanced intrinsic activity at each catalytic active site of NiCo$_2$O$_4$ after surface decoration with CePO$_4$.

In addition, Nyquist plots derived from electrochemical impedance spectroscopy (EIS) also showed the better conductivity of CePO$_4$/NiCo$_2$O$_4$ as compared to that of NiCo$_2$O$_4$ resulting from the smaller charge-transfer resistance and improved electrolyte/electrode interface (Figure S8). Thus, the high performance of CePO$_4$/NiCo$_2$O$_4$ makes it a possible electrode candidate for not only electrocatalytic water oxidation but also photoelectrocatalytic water splitting with the cooperation of good light absorbers.

The durability of both CePO$_4$/NiCo$_2$O$_4$ catalysts was also investigated in 1.0 M KOH using the cyclic voltammetry method for 2000 cycles (Figure S9) and the chronopotentiometry method with a fixed current density of 50 mA cm$^{-2}$ without iR corrections (Figure 3c,d). For CePO$_4$/NiCo$_2$O$_4$, the polarization curves before and after 2000 CV cycles were almost the same, as accompanied by the preservation of morphology, as well as Ce and P elements (Figure S10). For both samples of CePO$_4$/NiCo$_2$O$_4$, small fluctuations were observed for overpotentials required to maintain the fixed current density during the 20 h test. The required overpotential of ∼450 mV for NiCo$_2$O$_4$ was much larger than that for CePO$_4$/NiCo$_2$O$_4$ (∼380 mV), indicating the better OER activity in the presence of CePO$_4$. For CePO$_4$/NiCo$_2$O$_4$, the polarization curve after the stability test almost overlapped with the initial curve, again confirming the excellent stability of the electrocatalyst (Figure 3c). Moreover, the CePO$_4$/NiCo$_2$O$_4$ electrodes also exhibited good activity and durability at a higher working temperature of 50 °C as illustrated in Figure S11. Impressively, an overpotential of 325 mV was needed only to afford a current density of 100 mA cm$^{-2}$, whereas high stability is witnessed during its 20 h chronopotentiometry test at 50 °C. To further assess the durability of CePO$_4$/NiCo$_2$O$_4$, a long-term stability test was performed under an overpotential of 400 mV for 1000 h. Excitingly, there is not any significant deterioration for the current density of ∼64 mA cm$^{-2}$ from the initial to the end of this test, illustrating the exceptional robustness of CePO$_4$/NiCo$_2$O$_4$ (Figure 3e). Because of the stable and conductive support of the Ni foam, NiCo$_2$O$_4$ nanowires as the robust host electrocatalysts are aligned on Ni foam for OER and play key roles in the good durability, which is also witnessed by the chronopotentiometry test with a fixed current density of 50 mA cm$^{-2}$ as exhibited in Figure 3d. Moreover, the good cohesion of CePO$_4$ on NiCo$_2$O$_4$ and the chemical stability (Figure S10) of CePO$_4$ under alkaline conditions contributed to the improvement in activity for NiCo$_2$O$_4$ during such a long test. Therefore, the structural features and the combination of CePO$_4$ with NiCo$_2$O$_4$/Ni foam led to good stability for this 1000 h OER test.

3.3. Discussion. By all means, using CePO$_4$ to decorate NiCo$_2$O$_4$ nanowire arrays is herein demonstrated to be a reliable approach to promoting the OER catalytic activity of NiCo$_2$O$_4$, but the role of CePO$_4$ needs to be clarified. In this case, CePO$_4$ alone (Figure S12) was loaded onto the glassy carbon electrode at a density of 0.56 mg/cm2, which exhibited negligible OER activity in 1.0 M KOH (Figure S12d), indicating that CePO$_4$ was inactive for OER. Loading CePO$_4$ onto Ni foam via the same method could somehow improve the activity of Ni foam for OER (Figure S13). Thus, it is logically inferred that CePO$_4$ would serve as a cocatalyst to facilitate the OER performance of electrocatalyst instead of functioning as electroactive species.

As reported in the literature, phosphate groups with good hydrophilicity can promote the uptake of oxygen-involving intermediates to favor water adsorption, working as a proton acceptor to facilitate the oxidation of metals on the surface as active sites and to accelerate the proton-transfer kinetics of M–OH and M–OOH deprotonation processes, lowering the energy barrier for intermediate formation by tuning the electronic structure of host electrocatalysts. Furthermore, Ce-based species and Ce-dopants are also known as efficient cocatalysts for improving the oxygen-involving electrochemical reactions because of the good oxophilicity of Ce and large oxygen storage capacity of CeO$_2$ as oxygen buffers. Thus, thorough investigations were then performed to obtain further insight into evaluating the roles of Ce and phosphate.
groups. Explicitly, NiCo$_2$O$_4$ on Ni foam functionalized by the respective Ce$^{3+}$ and phosphate ions (assigned as NiCo$_2$O$_4$−Ce$^{3+}$ and NiCo$_2$O$_4$−PO$_4$$^{3−}$, respectively) were prepared and characterized by XPS, as described in Figure S14.

Both NiCo$_2$O$_4$−Ce$^{3+}$ and NiCo$_2$O$_4$−PO$_4$$^{3−}$ electrodes were observed to deliver lower overpotentials and smaller Tafel slopes than those of NiCo$_2$O$_4$ alone (Figure 4b), suggesting the positive enhancement induced by both Ce$^{3+}$ and phosphate ions. In the case of NiCo$_2$O$_4$−Ce$^{3+}$, Ce$^{3+}$ ions were transformed to Ce(OH)$_3$ and deposited onto the surface of NiCo$_2$O$_4$ nanowires in an alkaline medium, which can absorb more water molecules and OH$^{−}$ ions to promote the oxidation of Ni$^{2+}$ to Ni$^{3+}$ as demonstrated by the significantly improved peaks at a potential of about 1.36 V (vs RHE). The excellent oxophilic property of Ce(OH)$_3$ can expedite the adsorption of hydroxide ions and the formation and release of oxygen molecules, being analogous to the effects of the Ce-dopant and CeO$_2$ as buffers for oxygen-containing species.16,41,46 Similarly, Ce species in CePO$_4$ could also promote the adsorption of oxygen-containing species and work as the buffer for the formation and release of molecular oxygen for CePO$_4$/NiCo$_2$O$_4$, leading to enhanced OER activity as compared to that for NiCo$_2$O$_4$ alone. As for NiCo$_2$O$_4$−PO$_4$$^{3−}$, the small Tafel slope (72 mV/dec, Figure 4c) suggests that after introducing PO$_4$$^{3−}$ as the proton acceptor, the deprotonation process of $\text{M}^−\text{OOH}$ to form $\text{M}^−\text{OO}^*$ is accelerated, while their good hydrophilicity can promote the adsorption and deprotonation of intermediates.27,29,38

4. CONCLUSIONS

CePO$_4$ is recognized as a novel cocatalyst to significantly improve the OER activity of NiCo$_2$O$_4$. The enhancement in the activity of NiCo$_2$O$_4$ after decorating with CePO$_4$ can be ascribed to the following reasons. (1) The properly modulated surface chemical states of Ni and Co with high oxidation states as well as O with electron-rich states would facilitate OER as a result of the interaction between CePO$_4$ and NiCo$_2$O$_4$. (2) The acceleration of proton transfer kinetics and good hydrophilicity of phosphate groups as proton acceptors would facilitate the adsorption and deprotonation of intermediates.27,29,38 (3) The good oxophilicity of Ce$^{3+}$ in CePO$_4$ would benefit the formation of intermediates and their subsequent conversion and release of oxygen molecules.31 Furthermore, CePO$_4$/NiCo$_2$O$_4$ also presents impressive stability for long time, >1000 h, with a large current density of ~64 mA cm$^{−2}$. All of these advantages would lead to the enhanced activity of NiCo$_2$O$_4$ decorated with CePO$_4$ as the superb electrocatalyst for OER processes.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsaem.9b00903.

Additional characterization and analysis of data for the electrocatalysts and comparison of OER performance (PDF)

AUTHOR INFORMATION

Corresponding Authors
*E-mail: johnnyho@cityu.edu.hk.
*E-mail: yongquan@mail.xjtu.edu.cn.

ORCID
Wei Gao: 0000-0001-7606-7402
Renjie Wei: 0000-0002-0459-7196

ACS Appl. Energy Mater. 2019, 2, 5769−5776
Johnny C. Ho: 0000-0003-3000-8794
Yongquan Qu: 0000-0002-6202-1929

Author Contributions
These authors contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the National 1000-Plan program, National Natural Science Foundation of China (grant 21872109), the Fundamental Research Funds for the Central Universities (3102019QD0406), the Science Technology and Innovation Committee of Shenzhen Municipality (grant JCYJ20170818095207778), and the Environment and Conservation Fund of Hong Kong SAR, China (ECF 2016-85).

Y.Q. also acknowledges support from the Cyrus Tang Foundation through the Tang Scholar Program.

REFERENCES

DOI: 10.1021/acs.aem.9b00903

