2D WS$_2$: From Vapor Phase Synthesis to Device Applications

Changyong Lan,* Chun Li,* Johnny C. Ho, and Yong Liu

The discovery of graphene has triggered the research on 2D layer structured materials. Among many 2D materials, semiconducting transition metal dichalcogenides (TMDs) are widely considered to be the most promising ones due to their excellent electrical and optoelectronic characteristics. Tungsten disulfide (WS$_2$) is a kind of such TMDs with fascinating properties, such as the high carrier mobility, appropriate band gap, strong light–matter interaction with the large light absorption coefficient, very large exciton binding energy, large spin splitting, and polarized light emission. All these interesting properties can make the 2D WS$_2$ being highly favorable for applications in memristors, light-emitting devices, optical modulators, and many others. Here, the comprehensive review on the properties, vapor phase synthesis, electronic and optoelectronic applications of 2D WS$_2$ is presented. This review does not only serve as a design guideline to elevate the material quality of 2D WS$_2$ films via enhanced synthesis approaches, but also provides valuable insights to various strategies to improve their device performances. With the fast development of wafer-scale synthesis methods and novel device structures, 2D WS$_2$ can undoubtedly be a rising star for the next-generation devices in the near future.

1. Introduction

The rising of 2D materials research is ignited by the discovery of graphene, a one-atom-thick carbon sheet, in 2004. Due to the excellent physical and chemical properties of 2D materials, they become a hot topic in many disciplines, such as physical science, chemical science, material science, and engineering. Until now, there are already a large number of 2D materials developed, including graphene, transition metal dichalcogenides (TMDs), black phosphorene, Germanane, GeTe, 2D covalent organic frameworks, etc. In theory, it is predicted to have more than 5000 different kinds of 2D materials which cover a wide range of material categories in insulators, semiconductors, semimetals, metals, superconductors, etc., making them possible to construct various 2D materials devices with novel functions. Particularly, graphene is the most intensively studied material. Although it possesses superior properties with the large carrier mobility, flat light absorption in a wide spectrum, and strong mechanical strength, the lack of a band gap would greatly limited its applications in electronics and optoelectronics. For example, transistors made from graphene cannot be effectively turned off, while graphene-based photodetectors always have a substantially large dark current. In this case, semiconducting 2D materials with suitable band gaps, rather than graphene, are highly desired for high-performance electronic and optoelectronic devices.

Among many semiconducting 2D materials, TMDs are the most promising alternatives because of their appropriate band gaps, good stability in ambient, excellent electrical, and optoelectronic characteristics. WS$_2$ is one of the TMD materials that has superior properties as compared with other TMDs. It has the relatively high carrier mobility, large exciton binding energy, large spin–orbit splitting, and strong photoluminescence (PL). These properties make it ideal for a wide range of applications, such as transistors, photodetectors, light-emitting devices (LEDs), etc. Despite the fact that there are numerous reports focused on the synthesis, properties, and applications of 2D WS$_2$, there is still a lack of the comprehensive review on 2D WS$_2$. In this review article, we would focus on the vapor phase synthesis, property assessment, and electronic and optoelectronic applications of 2D WS$_2$. At first, the fundamental properties of 2D WS$_2$ are introduced in details. Then,
WS₂ is a kind of 2D TMD materials that has many interesting physical properties, such as the transition of indirect to direct band gap at a single-layer limit, layer-dependent band gap, large exciton binding energy, strong spin–orbit splitting, valley selection rule, etc. As a result, WS₂ has promising potentials for a wide range of applications in transistors, diodes, LEDs, photodetectors, pulsed lasers, and many others.

2. Properties

WS₂ has a layered crystal structure. In the structure, each layer consists of three atomic planes. Each of the atomic planes has the hexagonally packed atoms (Figure 1b), where the W metal atom plane is sandwiched between two planes of S atoms, forming the S-W-S structure. The distance between each layer is about 0.65 nm. There are no dangling bonds existed on the surfaces of each layer, which makes the surface very stable and nonreactive. These layers are hold together by van der Waals interaction. Due to the weak interlayer van der Waals interaction, the WS₂ crystal can be mechanically exfoliated by scotch tape. The stable coordination of W is trigonal prismatic as given in Figure 1c, which is the case for 2H phase WS₂ (for single layer, it is 1H phase). While it can also have the octahedral coordination (Figure 1d), which can be seen in the meta-stable 1T phase WS₂. Due to the stacking difference and lattice distortion, other polymorphs are formed. Detailed discussion about the polymorphs can be found elsewhere.[30] The crystal lattice of 2H WS₂ belongs to the nonsymmorphic hexagonal space group P6₃/mmc (D₃h) that has the space inversion symmetry.[31] The unit cell of 2H WS₂ is extended over two layers with the S atoms of the second layer sitting on top of the W atoms of the first layer and vice versa. When 2H WS₂ is thinned down to a single layer, the unit cell of which would contain only one layer, known as 1H WS₂. Monolayer 1H WS₂ (the “1H” term will be omitted for the following discussion) is composed of one S-W-S stacking unit, which has a three-fold rotational axis, i.e., c-axis. The W atoms plane would become the mirror plane for single-layer WS₂. The crystal lattice of monolayer WS₂ belongs to P6m2(D₆h).[31] As compared with the bulk WS₂, monolayer counterparts lack of the space inversion symmetry. Furthermore, it can be inferred that even layer-number WS₂ has the space inversion symmetry while odd layer-number WS₂ lacks of the space inversion symmetry from the crystal structure.

2.1. Crystal Structure

As shown in Figure 1a, WS₂ has a layered crystal structure.[29] In the structure, each layer consists of three atomic planes. Each of the atomic planes has the hexagonally packed atoms (Figure 1b), where the W metal atom plane is sandwiched between two planes of S atoms, forming the S-W-S structure. The distance between each layer is about 0.65 nm. There are no dangling bonds existed on the surfaces of each layer, which makes the surface very stable and nonreactive. These layers are hold together by van der Waals interaction. Due to the weak interlayer van der Waal interaction, the WS₂ crystal can be mechanically exfoliated by scotch tape. The stable coordination of W is trigonal prismatic as given in Figure 1c, which is the case for 2H phase WS₂ (for single layer, it is 1H phase). While it can also have the octahedral coordination (Figure 1d), which can be seen in the meta-stable 1T phase WS₂. Due to the stacking difference and lattice distortion, other polymorphs are formed. Detailed discussion about the polymorphs can be found elsewhere.[30] The crystal lattice of 2H WS₂ belongs to the nonsymmorphic hexagonal space group P6₃/mmc (D₃h) that has the space inversion symmetry.[31] The unit cell of 2H WS₂ is extended over two layers with the S atoms of the second layer sitting on top of the W atoms of the first layer and vice versa. When 2H WS₂ is thinned down to a single layer, the unit cell of which would contain only one layer, known as 1H WS₂. Monolayer 1H WS₂ (the “1H” term will be omitted for the following discussion) is composed of one S-W-S stacking unit, which has a three-fold rotational axis, i.e., c-axis. The W atoms plane would become the mirror plane for single-layer WS₂. The crystal lattice of monolayer WS₂ belongs to P6m2(D₆h).[31] As compared with the bulk WS₂, monolayer counterparts lack of the space inversion symmetry. Furthermore, it can be inferred that even layer-number WS₂ has the space inversion symmetry while odd layer-number WS₂ lacks of the space inversion symmetry from the crystal structure.

2.2. Layer-Dependent Band Structure, Band Gap, and PL

Similar to other types of semiconducting TMDs, WS₂ shows a layer-number-dependent band structure as presented in Figure 2a.[32] In fact, monolayer WS₂ has a direct band gap. The conduction band minimum (CBM) and the valance band maximum (VBM) are both located at K point. When the layer number of WS₂ increases, the VBM shifts to Γ point, while the CBM locates between K and Γ points (called Q point). In addition, the band gap value would decrease with the increase of the layer number (Figure 2b).[33] The band edge states at K_c and K_v (the subscripts c and v stand for the K point at conduction and valance band, respectively) have dominant contributions from the W d_xy, d_z², and d_yz orbitals with an admixture of the S p-orbitals.[24] For the states at Q_c and Γ_v, the contribution from the S p_z orbitals become significant, which plays an important role for the transition from direct to indirect band gap from monolayer to bilayer and multilayer. The close distance between S p_z orbitals from neighboring layers leads to the large hopping that significantly changes the energy of Q_c and Γ_v.[34] Thus, the transition from a direct band gap (monolayer WS₂) to an indirect band gap (bilayer and multilayer WS₂) is a consequence of the interlayer hopping.[35]

Due to the large spin–orbit coupling (SOC), the valance band near the K point shows a large spin–orbit splitting (~400 meV, Figure 2a).[24,32,36] The spin–orbit splitting near the K point is dominated by the W d_xy and d_x²–y² orbitals, which are largely localized in individual layers.[37] Because of the low interlayer hopping of orbitals, the spin–orbit splitting energy has little changes with the layer number. It should be noted that the splitting of the VBM of monolayer is purely associated with the spin–orbit effect and the lack of inversion symmetry, while the same splitting for bilayer is caused by the combination of the interlayer interaction and SOC.[35]

In this fashion, the indirect-to-direct transition of the band structure would lead to the strong PL in monolayer WS₂ as depicted in the inset of Figure 2c.[32] With the decreasing
layer number of WS$_2$, the PL intensity from direct interband transition increases dramatically and reaches the maximum with monolayer WS$_2$, where the intensity is more than three orders of magnitude stronger than that from the bulk (Figure 2c). The PL intensity is about one order of magnitude higher than that from the bilayer counterparts (Figure 2c inset). Except PL emission from the direct transition at K point (A exciton), the weak PL peak (B) is also observed at the higher energy (Figure 2d). The splitting between the A and B peaks is almost the same for different layer numbers of WS$_2$ (Figure 2e) with a value of about 400 meV. The A and B emissions are a result of valance band splitting at the K points arising mainly from SOC.32,36 The peak originating from the indirect band gap transition (I peak) shifts gradually toward the higher energy and fades to null at the monolayer limit, being consistent with theoretical result.32

Attributed to the giant SOC, the VBM of monolayer WS$_2$ shows the spin index locked with the valley index, i.e., valley K (−K) has only the spin up (down) electrons, leading to the valley-dependent optical selection rules (Figure 2f). The rule dictates that the photoexcitation is able to selectively excite the \pmK valley electrons from the spin-polarized bands with the circularly polarized light.38,39 Actually, the polarization-resolved PL spectrum can reflect the optical selection rule (Figure 2g), where the monolayer WS$_2$ exhibits polarization dichroism under the circular polarized light excitation. Owing to intervalley scattering, the PL is not fully polarized.38 The large spin–valley coupling strength in WS$_2$ (\approx0.4 eV) is significantly higher than the interlayer hopping energy (\approx0.1 eV), which induces the suppressed interlayer coupling at K and K′ (−K) valleys (Figure 2h).38 As a result, bilayer WS$_2$ can be regarded as the decoupled layers, leading to polarized light emission when excited by the circular polarized light excitation (Figure 2i).

2.3. Doping- and Strain-Dependent PL of Monolayer WS₂

The light emission from monolayer WS₂ can be effectively tuned by electrical doping. As presented in Figure 3a, the PL spectra measured from a field-effect transistor (FET) made with exfoliated monolayer WS₂ channel exhibit an obvious gate-dependent characteristic.⁴⁰ In fact, the emission consists of two components, namely, the low energy and the high energy peaks, assigned to an exciton (Xₐ) and a negative trion (X⁻ₐ), respectively. When the gate voltage sweeps from negative to positive, the peak position of X⁻ₐ would exhibit a red shift while the Xₐ one slightly blueshifts (Figure 3b). This way, the energy difference between Xₐ and X⁻ₐ increases. The energy difference is defined as the dissociation energy of trion, which consists of the trion binding energy (Eₜ, a constant) and the Fermi energy (Eₖ).⁴⁰ In this case, the increase of the dissociation energy of trion with electron doping is mainly due to the rise of Fermi energy (Figure 3b). On the other hand, the exciton energy is defined as the difference between band gap and exciton binding energy, which shows a blueshift with increasing electron doping. This shift is attributed to the decrease of exciton binding energy with electron doping. Furthermore, the overall integrated intensity and intensity of Xₐ decrease with the increasing electron doping, but the intensity of X⁻ₐ first increases from -40 to 0 V, then remains stable between 0 and 30 V, and finally decreases after 30 V (Figure 3c). Because the PL spectrum evolution is basically due to interconversion between neutral exciton and trion by modulating the doping-induced carrier density,⁴¹ the PL spectrum of monolayer WS₂ can also be tuned by the excitation light power, i.e., optical doping.⁴⁰ As shown in Figure 3d, the overall emission band profile evolves from two-component feature at low excitation powers into a single peak at high powers. The variation is mainly ascribed to the photo-induced electron doping.⁴⁰

At the same time, the density functional theory (DFT) calculation indicates that monolayer WS₂ undergoes a transition from direct to indirect band structure when the in-plane strain is larger than 2.6%.⁴² This transition would affect the PL spectrum of monolayer WS₂. To be specific, the PL emission shows a redshift with almost unchanged line shape with the increase of the strain. The broadening of the emission occurs when the strain reaches 2.5%. Then, the emission continues to broaden and redshift with increasing the strain. This broadening is caused by the appearance of indirect band gap emission (I peak). The I peak intensity tends to increase with the strain, whereas the excitonic Xₐ and X⁻ₐ peaks decrease with the strain. Both the Xₐ, X⁻ₐ, and I peak energies exhibit a linear redshift with the strain. The I and Xₐ peaks do not converge at the strain of 2.5% (near the threshold for direct-to-indirect band structure transition), which is in contrast with the expectation. This discrepancy is caused by the larger exciton binding energy of the indirect transition as compared with the direct one.⁴² The trion dissociation energy decreases with the increase of the strain. The increase of strain can reduce the effective exciton mass and enlarge the polarizability,⁴³ leading to the reduction of the trion dissociation energy.⁴⁰

Figure 3. Doping- and strain-dependent PL of monolayer WS₂. a) PL spectra under different gate voltages. b) Excitonic emission peak energies and dissociation energies of trion as a function of gate voltage. c) Integral intensity of the excitonic peaks as a function of gate voltage. d) PL spectra under different excitation powers. Reproduced with permission.⁴⁰ Copyright 2015, American Chemical Society.
2.4. Exciton Binding Energy

The excitons in 2D WS₂ are very different from the ones in bulk materials. Actually, the electron and hole forming an exciton in monolayer WS₂ are strongly confined to the plane of the monolayer. In addition, the electron and hole experience the reduced screening due to the change in dielectric environment (Figure 4a). These effects have two major implications. One is that the quasi-particle band gap is expected to increase for monolayer WS₂. Another is that the enhanced electron–hole interaction is anticipated to increase with the exciton binding energy (Figure 4a). Owing to the dielectric confinement, the exciton binding energy in monolayer WS₂ is much larger than that of conventional materials. In order to determine the exciton binding energy in monolayer WS₂, Chernikov et al. studied the Rydberg series of exciton Xₐ. The derivative of the reflectance contrast spectrum of the monolayer WS₂ is used to determine the positions of excited states (n = 1, 2, 3, etc.) of the bound electron–hole pairs (Figure 4b). Hydrogen model is then employed to fit the measured data. However, for the low n number (n = 1 and 2), the data cannot be fitted well due to the more strongly screened electron–hole interaction at the short range. For n = 3–5, the data can be fitted perfectly due to the weakly screened electron–hole interaction at the long range, from which a quasi-particle band gap of 2.41 eV is determined (Figure 4c). By subtracting the 1s transition energy (2.09 eV), an exciton binding energy of 0.32 eV is determined.

For the case of WS₂, it is also noted that each excitonic state has a specific parity, which the incident photons can excite. In other words, the one-phonon excitation only induces the even parity excitonic states (i.e., bright excitons), while the two-phonon excitation causes the odd parity excitonic states (i.e., dark excitons). Consequently, two-phonon luminescence (TPL) can be used to determine the exciton binding energy of monolayer WS₂. For instance, Ye et al. estimated the positions of dark excitonic states by using TPL. Two prominent dark excitonic peaks labeled as 2p and 3p states are observed, which are located at 2.28 and 2.48 eV, respectively. The ab initio GW method is employed to calculate the quasi-particle band structure, whereas the ab initio GW plus Bethe-Salpeter equation approach is utilized to evaluate the excitonic states and optical spectrum of monolayer WS₂. The calculated positions of 2p and 3p states of the Xₐ exciton as well as the 1s state of the Xₐ exciton and Xₐ exciton are in good agreement with the experimental spectrum.

The quasi-particle band gap is found to be ≈2.7 eV from the calculation. Thus, the exciton binding energy of ≈0.7 eV is obtained. Table 1 lists the quasi-particle band gap and exciton binding energy of monolayer WS₂ reported in literature, which confirms the relatively large quasi-particle band gap and exciton binding energy of monolayer WS₂.

2.5. Raman Spectrum

Raman spectrum is a powerful nondestructive technique to study 2D materials. For Raman spectrum of bulk WS₂ in a backscattering geometry, it contains first-order modes at the Brillouin zone center (E₂g(Γ) and A₁g(Γ)) plus a zone-edge mode, which is activated by disorder, being identified as the longitudinal acoustic mode at the M point (LA(M)). LA(M) mode are in-plane collective movements of the atoms in the lattice, similar to the sound waves. Additional Raman peaks are attributed to the multi-phonon combinations of these modes. Similar to the bulk WS₂, the Raman spectrum of monolayer WS₂ depends on the excitation wavelength (Figure 5a). For excitation wavelength of 488 nm, the Raman spectrum is dominated by the first-order modes: LA(M) at 176 cm⁻¹, E₂g(Γ) at 356 cm⁻¹, and A₁g(Γ) at 418 cm⁻¹. However, under the excitation at 514.5 nm laser, the Raman spectrum becomes richer (Figure 5a). Many second-order peaks get stronger than those observed in the bulk WS₂. The strongest Raman peaks excited at 514.5 nm is the 2LA(M) mode at 352 cm⁻¹, which is almost twice of that of the A₁g(Γ) mode. Moreover, E₂g(Γ) peak at 356 cm⁻¹ overlaps with 2LA(M) peak. Multi-peak Lorentzian fitting has then been used to separate the individual peaks. The rich Raman peaks excited with 514.5 nm are caused by enhanced second-order

Table 1. Quasi-particle band gap (E₂) and exciton binding energy (E₀) of monolayer WS₂.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT</td>
<td>2.88</td>
<td>1.04</td>
<td>[253]</td>
</tr>
<tr>
<td>DFT + reflectance spectrum</td>
<td>2.41</td>
<td>0.32</td>
<td>[45]</td>
</tr>
<tr>
<td>DFT + TPL</td>
<td>2.7</td>
<td>0.7</td>
<td>[23]</td>
</tr>
<tr>
<td>TPL</td>
<td>2.73</td>
<td>0.71</td>
<td>[254]</td>
</tr>
<tr>
<td>Optical reflectivity/absorption</td>
<td>3.01</td>
<td>0.83</td>
<td>[235]</td>
</tr>
</tbody>
</table>
Raman peaks arising from the double-resonance Raman process. Rich Raman peaks are as well observed when excited with 532, 647 nm wavelengths. The positions and relative intensities of the Raman peaks are sensitive to the number of layers of WS\textsubscript{2}, as shown in Figure 5b. As the layer number of WS\textsubscript{2} increases, the relative intensity of the A\textsubscript{1g}(\Gamma) mode is ascribed to the increased restoring force due to van der Waals interactions established among the layers. Nevertheless, the E\textsubscript{1g}(\Gamma) and 2LA(M) phonon modes display subtle redshifts with the increase of layer number of WS\textsubscript{2}. It should be noticed that the error of the positions of 2LA(M) and E\textsubscript{1g}(\Gamma) modes increases because of the close proximity of the two modes. The frequency difference of A\textsubscript{1g}(\Gamma) and E\textsubscript{1g}(\Gamma) modes increases with the increasing layer number, which is usually used to determine the thickness of WS\textsubscript{2}. The relative intensity of the prominent Raman peaks depends on the number of layers as depicted in Figure 5c. The most interesting feature is that the intensity ratio of 2LA(M)/A\textsubscript{1g}(\Gamma) enhances dramatically for double- and single-layer WS\textsubscript{2} with 514.5 nm excitation line. The intensity ratio of 2LA(M)/A\textsubscript{1g}(\Gamma) is larger than 2 for monolayer WS\textsubscript{2}, which provides a fingerprint to determine the monolayer WS\textsubscript{2}.

Besides, the characteristics of Raman spectrum of monolayer WS\textsubscript{2} is highly depended on the applied strain. The E\textsubscript{1g} mode is very sensitive to the strain, while the A\textsubscript{1g} mode is inert to the in-plane strain. The E\textsubscript{1g} mode evolves in-plane opposite displacements of W and S atoms, whereas the A\textsubscript{1g} mode corresponds to the vibration of S atoms perpendicular to the plane. This way, E\textsubscript{1g} is sensitive to the in-plane strain but A\textsubscript{1g} does not. With the increase of the strain, E\textsubscript{1g} would have a redshift phenomenon and then split into two sub-modes: E\textsubscript{1g} and E\textsubscript{2g}. A\textsubscript{1g} does not show any change under low strain; however, it gives a slight redshift at high strain, which is attributed to the laser-induced heating.

Apart from strain, the A\textsubscript{1g} mode of WS\textsubscript{2} is also sensitive to doping but the E\textsubscript{1g} mode does not. The A\textsubscript{1g} mode has a strong coupling with electron, which softens and broadens with the increase of electron doping (Figure 5d). Upon p-type doping, the A\textsubscript{1g} mode shows a blueshift whereas the E\textsubscript{1g} mode remains unchanged (Figure 5e). The blueshift of the A\textsubscript{1g} mode increases with the p-type doping level (Figure 5f). In particular, the saturation of the blueshift can be caused by saturated p-type doping by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane molecules. All these findings demonstrate the usefulness of Raman spectroscopy for the detailed characterization of WS\textsubscript{2}.

2.6. Tunable Refractive Index by Electrical Field

The refractive index of WS\textsubscript{2} can be tuned by electrical field, which makes it useful for photonic applications. As shown
in Figure 6a, both the real (n) and imaginary (k) parts of the refractive index of monolayer WS$_2$ can be manipulated by gate voltage.\cite{35} The refractive index near the X_A exciton shows the substantial tenability such that the n value can be varied from 4.8 to 3.97, while the k value can be changed from 1.7 to 0.7. The variation of the n value at 1.92 eV and the k value at 1.95 eV as a function of charge density are then presented in Figure 6b. Both the real and imaginary parts of the refractive index have their corresponding maximum values at the charge neutrality point and decrease with the increasing charge density. The tunability of the refractive index of monolayer WS$_2$ is attributed to the spectral broadening and the interconversion of the neutral and charged excitons caused by the injected charge carriers.\cite{56} Moreover, the refractive index near the optical communication band ($\approx 1.55 \, \mu m$) can also be changed by electrical gating.\cite{56} The Δn reaches 0.53 ± 0.06 RIU (refractive index units) for a maximum doping of $(7.2 \pm 0.8) \times 10^{13} \, \text{cm}^{-2}$, whereas the value of Δk is only 0.004 ± 0.002. This result indicates that monolayer WS$_2$ has a unique combination of strong electro-refractive response and small electro-absorptive response at near-infrared (NIR) wavelengths. In this case, the propagating light would undergo a large phase change with low loss, which is useful for optical modulators in optical communications.\cite{56}

2.7. Strong Light–Matter Interaction

Theoretical calculation indicates that the density of states and the joint density of states of TMD materials show strong peaks in the visible range associated with Van Hove singularities in the density of states.\cite{57} These Van Hove singularities in the density of states guarantee the enhanced light–matter interaction, resulting in the improved photon absorption and electron–hole pair creation. Both theoretical and experimental results reveal that a single layer of WS$_2$ can absorb more than 10% of the incident light, suggesting the strong light–matter interaction in a monolayer WS$_2$.\cite{58,59} This strong light–matter interaction would lead to a very large absorption coefficient of $\approx 1.5 \times 10^6 \, \text{cm}^{-1}$.\cite{58} All these findings demonstrate the promising potential of WS$_2$ for applications in various optoelectronic devices.

2.8. Mobility

Theoretically, monolayer WS$_2$ possesses superior electrical properties with a high carrier mobility for both electrons and holes. The interaction of these carriers with lattice vibration, known as phonons, actually dictates the intrinsic transport properties of WS$_2$.\cite{60} When considering all phonon branches, the room temperature electron and hole mobilities of monolayer WS$_2$ are found to be 320 and 540 cm2 V$^{-1}$ s$^{-1}$, respectively. The effective electron and hole masses are determined to be 0.31m_0 and 0.42m_0 (m_0 is the mass of a free electron), accordingly.\cite{60} The larger effective mass and mobility of hole designate that the hole transport experiences less scattering with phonons. In addition, WS$_2$ has the highest electron and hole mobilities among all MX$_2$ (M = Mo, W; X = S, Se) materials. When only long wave acoustic phonons are considered, monolayer WS$_2$ would have a room temperature electron mobility of 1103 cm2 V$^{-1}$ s$^{-1}$.\cite{22} These calculated results suggest that WS$_2$ has huge potentials as channel materials for high-performance FETs.

3. Synthesis

Until now, various kinds of synthesis methods were developed for TMDs.\cite{59,61,62} Because vapor phase synthesis is a versatile method to achieve large-area high-quality 2D materials, we only focus on the vapor phase synthesis techniques for 2D WS$_2$ in this review. For other methods, the readers can find some excellent reviews on TMDs.\cite{63–65} In fact, there are diverse kinds of vapor phase synthesis methods that have been developed. They can be classified into three main classes according to the precursor sources employed, including the sulfuration of seed films, vapor source methods, and solid-state source method. The following discussion will be based on this classification after the introduction of basic growth mechanisms.

3.1. Basic Growth Mechanisms

The detailed growth mechanisms of 2D materials utilizing chemical vapor deposition (CVD), a major type of vapor phase synthesis techniques, are intensively studied in the past years.\cite{66–68} Generally, the growth of a material there includes nucleation and crystal growth. The growth of 2D WS$_2$ also conforms this principle; however, there are still some differences for synthesizing 2D layered materials. Because of the passivated in-plane surface, the surface adatoms can easily migrate, while the adatoms have large possibility to incorporate into the 2D lattice at the edges. As a result, lateral growth is usually preferred. However, it is difficult for 2D layered materials directly nucleating on a smooth surface due to the weak interaction of the passivated in-plane surface with the substrate. Thus, two general growth mechanisms are proposed for the growth of 2D layered materials. The first one is the direct nucleation at a substrate in imperfect sites with the subsequent lateral growth (growth model 1 in Figure 7).\cite{69,70} The second one is the formation of nanoparticles, e.g., WO$_3$ nanoparticles, accompanied by the formation of a layered material shell, followed by the lateral growth.
particles are observed for the growth model II. Furthermore, the morphology of the grown films, particularly that nucleation nanoparticle or multilayer domain can be reduced with the introduction of H gas due to the etching effect. It should be noted that the growth mechanisms introduced here are invalid for sulfurization of seed film methods, which depends on the seed film formation.

3.2. Sulfurization of Seed Films

The sulfurization of seed films is a convenient method to obtain wafer-scale atomically thin 2D WS\textsubscript{2} films, with the quality of which depends highly on the quality of the seed film and sulfurization process. At present, various methods were used for the preparation of the seed films. These methods can be divided primarily into two types as: vacuum deposition and spin-coating. Among the vacuum deposition methods, they can be further divided into thermal/electron-beam evaporation, magnetron sputtering, and atomic layer deposition (ALD). The following discussion is arranged based on the seed film preparation methods, from vacuum deposition to spin-coating methods.

3.2.1. Thermal/Electron-Beam Evaporation

Thermal evaporation method is a simple technique for the deposition of metal oxide films with controlled thickness, which can be used to deposit WO\textsubscript{x} as the seed films for the preparation of WS\textsubscript{2} films.[74–78] For example, Elias et al. synthesized 2D WS\textsubscript{2} by the sulfurization of thermally evaporated WO\textsubscript{x} films.[74] The basic setup for the sulfurization process is shown in Figure 8a. With appropriate sulfurization procedures, large-area 2D WS\textsubscript{2} films can be easily obtained (Figure 8b). The thickness of WS\textsubscript{2} films is mainly determined by the thickness of starting WO\textsubscript{x} seed films. Monolayer, bilayer, and trilayer WS\textsubscript{2} film can then be obtained through the sulfurization of a 1, 2, and 2.8 nm thick WO\textsubscript{x} films, respectively. The quality of grown WS\textsubscript{2} films is also closely related with the WO\textsubscript{x} seed films. Although this method is highly scalable, the quality of obtained WS\textsubscript{2} films is relatively poor with small domain size and many defects. Furthermore, the uniformity of resulting WS\textsubscript{2} films is not good as well. At the same time, electron-beam evaporation is often used for the deposition of metal films. It has the ability to evaporate high melting point metals, such as W, due to the high energy of electron beam utilized in the process. In this regard, Mutlu et al. tried to synthesize WS\textsubscript{2} film by sulfurization of W metal films deposited by electron-beam evaporation.[79] However, due to the island-like morphology of the W metal seed layer, the resulting WS\textsubscript{2} film is discontinuous with nonuniform thickness. Further optimization is needed.

3.2.2. Magnetron Sputtering

Magnetron sputtering is widely used in the deposition of various kinds of films, such as metal films and metal oxide films. This way, it has also been commonly used for the preparation of seed layers for the synthesis of 2D WS\textsubscript{2} films.[80–84] Hussain et al. realized the wafer-scale WS\textsubscript{2} film preparation through the sulfurization of a radio frequency-magnetron sputtered WO\textsubscript{3} film.[85] By tuning the sputtering time to change the film thickness of WO\textsubscript{3}, the thickness of WS\textsubscript{2} films could be well controlled from 1.8 to 5 nm. Nevertheless, the obtained WS\textsubscript{2} had a nanocrystalline structure and composed of different layers. Magnetron sputtered W metal films were as well exploited as seed layers for the preparation of WS\textsubscript{2} films as demonstrated by Orofeo et al.[86] The grown film is polycrystalline with domain sizes ranging from 20 to 200 nm as shown in Figure 8c. Later, Jung et al. found that the orientation of obtained WS\textsubscript{2} films was strongly related to the sputtered W metal film thickness as given in Figure 8d.[82] The layer orientation of WS\textsubscript{2} is vertical to the substrate for thick W seed films (15 nm), while it is parallel to the substrate for very thin W seed films (2 nm), and the mixed orientation of WS\textsubscript{2} film is found for intermediate thick W seed films (5 nm). These orientation changes of WS\textsubscript{2} films upon the thickness of W metal films can be understood via the competition between surface energy and strain energy. In specific, there is a significant volume expansion for the conversion of W seed to WS\textsubscript{2} film due to the insertion of S atoms. When the seed layer is very thin and discontinuous, the growth of 2D horizontal film is energetically favorable. The reason is that the basal planes with low surface energy are exposed for the horizontal grown film, while the high surface energy edge sites are exposed for the vertical grown film. Notably, the surface energy of the edge sites is almost two orders of magnitude higher than that of the basal plane.[85] Furthermore, the horizontal volume expansion can be accommodated because the seed layer is discontinuous (Figure 8e). For thick continuous W films, the horizontal volume expansion cannot be accommodated upon sulfurization due to the anchor of the film by the substrate. Thus, significant amount of strain is induced in the film, which is not energetically favorable. For films with the vertically aligned orientation, the volume expansion can be accomplished in the vertical direction freely without any strain even though
the surface energy is increased due to the exposure of the edge sites. For W films with intermediate thickness, both vertical and horizontal growth can occur in order to minimize the total energy of the material system (Figure 8f).

3.2.3. ALD

As compared with thermal/electron-beam evaporation and magnetron sputtering, ALD gives more precise control on the WO₃ seed film thickness due to its self-limited growth mechanism. As a result, the thickness and uniformity of resulting WS₂ films can be well controlled. Song et al. used ALD to deposit WO₃ films and subsequently sulfurization was performed to convert it into WS₂ films (Figure 8g). Utilizing this method, they could get large-area uniform WS₂ films with thickness from monolayer to four layers (Figure 8h). Due to the high quality of seed layers the resulting WS₂ films also exhibit good quality although it still had small crystal domains. The fabricated top-gated FETs based on these monolayer WS₂ showed an electron mobility of 3.2 cm² V⁻¹ s⁻¹, which is already much higher than the value previously reported for the CVD grown WS₂ transistor (~0.01 cm² V⁻¹ s⁻¹), indicating the decent material quality of WS₂ here.

3.2.4. Spin Coating

Spin-coating method is widely used for the deposition of thin films. For the preparation of seed layers, dissoluble W-containing salts are employed. Currently, there are various kinds of W-containing materials suitable for the preparation of precursor solutions, such as (NH₄)₂WS₄, H₂WO₄, Na₂WO₄, and (NH₄)₂H₂W₁₂O₄₆. Due to the differences of wettability of the substrate with different precursors, the seed layer preparation procedure is somewhat different among various process schemes. Kwon et al. found that ethylene glycol is a good coordinated solvent for (NH₄)₂WS₄ to obtain uniform precursor seed
The SiO$_2$/Si substrate is first cleaned with a piranha solution, acetone, isopropyl alcohol, and deionized water for 10 min in a regular sequence. After that, the substrate is treated with O$_2$ plasma and UV-O$_3$ for 15 min. The precursor solution is then spin coated onto the substrate. After the formation of a uniform seed layer, a two-step thermolysis process is performed (Figure 9a). The thermolysis at 500 °C under N$_2$ atmosphere can convert the spin-coated (NH$_4$)$_2$WS$_4$ seed films into WS$_2$ thin layers. The complete conversion of WS$_4$ into WS$_2$ would occur at 950 °C with sulfur gas and H$_2$. Through this method, large-area WS$_2$ film can be obtained. The obtained film has polycrystalline structure with nonuniform thickness distribution as shown in Figure 9b. Abbas et al. further optimized the three parameters and created uniform large-area atomically thin WS$_2$ layers by a two-step thermal decomposition of (NH$_4$)$_2$WS$_4$ spun-coated films. In any case, the electron mobility of obtained WS$_2$ film is still very low of 10^{-4} to 10^{-2} cm2 V$^{-1}$ s$^{-1}$. Using the H$_2$WO$_4$ precursor, Chen et al. found that the functionalization of the substrate is very important for obtaining uniform WO$_3$ films by spin-coating method, which significantly affect the quality of resulting WS$_2$ films. The synthesis procedure is depicted in Figure 9c. The silanization of SiO$_2$/Si substrates is realized by decorating a layer of 3-aminopropyltriethoxysilane (APS) on the substrates. APS functional groups can act as a buffer layer for the H$_2$WO$_4$ precursor, resulting in the formation of uniform WO$_3$ seed films. As a result, uniform monolayer WS$_2$ film can be synthesized by the sulfurization of these uniform WO$_3$ seed films. Furthermore, the obtained monolayer WS$_2$ film has large single crystalline domains, approximately tens or even hundreds of micrometers in diameter, indicating the high quality of the obtained film. It is worth to mention that the oxidation state of W ions in solution-processed films is very important for realizing continuous WS$_2$ films as demonstrated by Choi et al. N$_2$H$_4$ is required to be added into the Na$_2$WO$_4$ solution to manipulate the oxidation state of W ions as schematically shown in Figure 9d. With the increase of the amount of N$_2$H$_4$, the film morphology would change from discontinuous to continuous manner as illustrated in Figure 9e. It is proposed that the pre-reduced tungsten suboxides by N$_2$H$_4$ can directly participate in the growth of WS$_2$, ensuring to achieve a full coverage of WS$_2$ film on the substrate (Figure 9f). In contrast, using H$_2$ as reducing reagent during the conversion of Na$_2$WO$_4$ films cannot result in continuous films because of the etching effect of H$_2$ to WS$_2$. The domain size of WS$_2$ films obtained by the use of tungsten suboxide seed film is about 200 µm. But the film is not uniform, with multilayer WS$_2$ flakes grown at the

Figure 9. Solution processed seed films. a) Schematic for the preparation of WS$_2$ films with (NH$_4$)$_2$WS$_4$ precursor solution. b) TEM image and selected area electron diffraction of the resulting WS$_2$ films. c) Schematic for the synthesis of WS$_2$ films with APS processed substrate. d) Schematic for the conversion of tungsten suboxide films into continuous WS$_2$ films. e) Morphology evolution of the WS$_2$ film with different amount of N$_2$H$_4$. f) Schematic illustration for the growth of WS$_2$ films with pre-reduced tungsten suboxide films. a,b) Reproduced with permission. Copyright 2015, American Chemical Society. c) Reproduced with permission. Copyright 2017, John Wiley and Sons. d–f) Reproduced with permission.
boundaries of the underlying single-layer WS$_2$ film (Figure 9e). The substrate used for the preparation of seed layers is as well important for the quality of WS$_2$ films. Lee et al. showed that single-crystal WS$_2$ can be epitaxially grown on BN films by spin coating NaWO$_4$ on the single-crystal BN film with subsequent sulfurization.$^{[97]}$

3.2.5. Doping

Sulfurization of seed films is a powerful way to substitute doping in WS$_2$ because it only needs the addition of dopants in the seed film. For example, Cao et al. realized p-type doping by the sulfurization of WO$_x$N$_y$ film deposited by ALD method (Figure 10a).$^{[98]}$ Accordingly, they could obtain 2 inches (”) wafer-scale N-doped WS$_2$ film due to the scalability of ALD method (Figure 10b). The N-doped few-layer WS$_2$ film delivered an average hole mobility of 5.5 cm2/Vs, when using Pt as device electrodes. Actually, solution precursors can be mixed well at the atomic level, leading to the homogenous and controllable doping in resulting WS$_2$ films. In this way, solution-prepared seed films can be used in the synthesis of doped WS$_2$ films with precisely controlled doping level.$^{[95, 96]}$ Zhang et al. adopted this method for the synthesis of Fe-doped WS$_2$ flakes and other doped TMDs (Figure 10c).$^{[96]}$ The Fe dopant atoms showed a uniform distribution in the WS$_2$ host lattice, while the doping level could be well controlled (Figure 10d). Unfortunately, continuous films have not been realized using this method, where further optimization is needed.

3.3. Vapor Source Method

Vapor source methods do not imply that all precursor sources are existed in the vapor phase for the synthesis of WS$_2$ films. In fact, these methods utilize solid and liquid sources, but they are not placed in the chamber directly. They are first converted into gas phase and then introduced into the reaction chamber. Depending on the source materials used here, the vapor source methods can be classified into metal–organic CVD (MOCVD) and conventional vapor source CVD. For example, MOCVD consumes metal–organic materials as the precursor sources, which can be easily evaporated at low temperatures but most of them are toxic. In addition, vapor source methods can also be categorized into ALD and CVD based on their different growth mechanisms. In this case, this section would be divided into three sub-sections, focusing on MOCVD, ALD, and conventional vapor source CVD for the growth of WS$_2$ films.

3.3.1. MOCVD

Actually, MOCVD is widely considered as a scalable fabrication method for the wafer-scale synthesis of numerous thin films. Kang et al. adopted this method for the synthesis of atomically thin 2D materials for the first time.$^{[99]}$ With optimized conditions, monolayer WS$_2$ films up to 4” in size can be obtained. During the growth, precursor sources of W(CO)$_5$, (C$_2$H$_2$)$_2$S (also known as DES) and H$_2$ are employed, where they are all diluted in the carrier gas of Ar. The concentration

![Figure 10. Doping in the seed film. a) Schematic for the synthesis of N-doped WS$_2$ using ALD-synthesized WOxNy as the seed film. b) Photograph of the 2” large N-doped WS$_2$ film. c) Schematic for the synthesis of doped WS$_2$ by using solution-processed seed films. d) Scanning transmission electron microscope images of the Fe-doped WS$_2$ with different doping concentrations. a,b) Reproduced with permission. $^{[98]}$ Copyright 2017, American Chemical Society. c,d) Reproduced with permission. $^{[96]}$ Copyright 2020, American Chemical Society.](image)
of each reactant can be precisely controlled by regulating the partial pressure of each reactant. As a result, the nucleation density and intergrain stitching are well controlled. With a low partial pressure of the W precursor, the WS$_2$ film tends to grow in a layer-by-layer mode. In specific, seed nucleation is first occurred on the substrate, followed by the subsequent growth around the seed edges for the formation of monolayer film. After that, seed nucleation is concentrated to take place at the grain boundaries for the consequent bilayer growth. This way, the edge attachment is the main driving mechanism for the monolayer growth after nucleation, leading to the lateral extension of the monolayer grains. Hence, the adjacent monolayer grains are always connected by the tilt grain boundaries. This layer-by-layer growth mode would be easily destroyed when the high W precursor partial pressure is utilized, resulting in a mixture of monolayer, multilayer, and no-growth regions. It is therefore important to maintain a low W precursor partial pressure during the entire growth process in order to obtain a uniform monolayer WS$_2$ film. Moreover, the grain structures of WS$_2$ films, such as the grain size and intergrain connection, are found highly depended on the precursor concentration of H$_2$ and DES, as well as the amount of residual H$_2$O in the reaction chamber. H$_2$ is observed to have two functions for the synthesis here. In particular, H$_2$ can easily induce decomposition of DES, which in turn increases the seed nucleation due to hydrogenolysis. Also, H$_2$ can perform etching of the WS$_2$ film, preventing the intergrain connection. On the other hand, the increase of DES and residual H$_2$O concentration enhances the seed nucleation density with the decreased grain size. In this regard, it is necessary to have the optimal concentration of precursors to achieve continuous monolayer WS$_2$ with large grains and high-quality intergrain stitching. Once the synthesis is relatively optimized, the as-grown WS$_2$ film can exhibit an average electron mobility of 5 cm2V$^{-1}$s$^{-1}$, when they are fabricated into transistors. At present, although MOCVD can produce the wafer-scale monolayer films, it still has a very low growth rate, requiring 26 h for the full coverage of a 4 in. wafer. Furthermore, the grain size is small (about 1 µm) with random orientation. Due to the similar lattice symmetry of sapphire with WS$_2$, Grundmann et al. found that epitaxy coalesced WS$_2$ layers could be obtained by tuning the growth parameters.$^{[100]}$ In any case, the conventional hot-wall chamber for MOCVD is highly energy consumption. The possible decomposition of precursors before reaching the substrate would make the growth process extremely complicated. In order to solve these problems, Choudhury et al. employed a cold-wall CVD chamber for the synthesis of WS$_2$ films as shown in Figure 11a.$^{[100]}$ In contrast to the hot-wall MOCVD, DES is not suitable to be used as the S source in a cold-wall MOCVD system because it would lead the formation of graphitic carbon, which can compete with the growth of WS$_2$, inhibiting the lateral extension of WS$_2$. Accordingly, the grain size of WS$_2$ is only about 50 nm (Figure 11b). More importantly, the contamination of WS$_2$ films by carbon species would lead to the quenching of the measured PL spectrum (Figure 11d). H$_2$S is found to be a good S precursor in the cold-wall MOCVD system. Using H$_2$S, the fabricated WS$_2$ films have a relatively large grain size (\approx200 nm, Figure 11c) without any contamination associated with carbon species. The obtained WS$_2$ also exhibits a strong PL emission (Figure 11d). Even though the required growth time for a continuous WS$_2$ film is much reduced down to only \approx30 min as compared with that of the hot-wall MOCVD system, the film uniformity is still poor.

3.3.2. ALD

ALD has as well been adopted to synthesize atomically thin WS$_2$ films. There is a distinctive difference between ALD and CVD that ALD process relies on the alternative supply of precursors one at a time onto the substrate, which leads to a layer-by-layer growth mode of thin films.$^{[102]}$ This unique ALD growth mechanism would ensure excellent growth control of conformal WS$_2$ films at the atomic level and at low temperatures on large-area substrates, even with features of 3D structures consisting of high aspect ratio.$^{[103]}$ Furthermore, the process temperature of most of the ALD synthesis is compatible with back-end-of-line (BEOL) techniques (≤ 450 °C), making ALD attractive for many advanced applications.$^{[104]}$ Usually, WF$_6$ and H$_2$S are used as the W and S sources, respectively, for the ALD synthesis of WS$_2$ films.$^{[103–106]}$ Because W in WF$_6$ has an oxidation state of +6, it needs to be reduced to +4 for the formation of WS$_2$. H$_2$ plasma is hence employed as a good reducing agent to synthesize WS$_2$.$^{[103–106]}$ In principle, the synthesis of WS$_2$ films by ALD is based on a ternary reaction cycle as given in

Figure 11. MOCVD synthesis of WS$_2$. a) Schematic of the cold-wall MOCVD system. b,c) AFM image of the WS$_2$ film grown with the precursors of DES and H$_2$S, respectively. d) PL spectra of the WS$_2$ films grown with the precursors of H$_2$S and DES. Reproduced with permission.$^{[95]}$ Copyright 2018, American Chemical Society.
Figure 12. ALD synthesis of WS₂ films. a) Schematic of the ternary ALD reaction cycle required for the formation of WS₂. b) Schematic of the nucleation mechanism for the growth of WS₂. c) Evolution of the crystal density and grain size of WS₂. d) TEM image of WS₂ deposited on Si fins by ALD. Reproduced with permission. Copyright 2018, American Chemical Society.

3.3.3. Conventional Gas Phase CVD

For conventional gas phase CVD, the precursors are introduced into the reaction chamber in the gas form with continuous feeding. For the synthesis of 2D WS₂ films, Park et al. exploited WCl₆ and H₂S as the W and S sources, respectively. WCl₆ gas is generated in a bubbler-containing WCl₆ and then transferred into reaction chamber by Ar carrier gas. The reaction is performed at 700 °C. Because of the high reaction temperature, no reducing agent is needed. The growth of WS₂ is found to obey the layer-by-layer growth mode as presented in the morphological evolution with increasing growth duration (Figure 13a–d). In explicit, the nucleation of WS₂ is first occurred, followed by the growth of the first layer. Subsequently, the second layer growth begins after the first layer is almost completely achieved. In this manner, the WS₂ film with different number of layers can be obtained by varying the deposition time (Figure 13e–g). Since gas phase precursors are employed here, this method can be used for large-area synthesis as shown in Figure 13h. However, the grain size is still relatively small of only ≈100 nm. It was reported that alkali metal halides had the ability to suppress the nucleation and hence enlarge the domain size of 2D TMDs. Remarkably, Okada et al. introduced NaCl during the CVD synthesis of WS₂ using gaseous precursors of WF₆ and H₂S. The size of obtained triangle-shaped WS₂ crystals was about 10 μm after the introduction of NaCl. Although large WS₂ crystals were obtained, no continuous film was realized. Irisawa et al. synthesized WS₂ films by gas phase CVD using WF₆ and H₂S as the sources in both hot-wall and cold-wall reaction chamber. Wafer-scale WS₂ films in the size of 2" could be synthesized in both cases. Furthermore, the process temperature in the cold-wall system can be set as low as 250 °C, which widens the applications of 2D WS₂, such as the utilization in flexible electronics and BEOL transistors. Very recently, Tang...
et al. designed a vertical furnace for the synthesis of single-layer WS$_2$ flakes as schematically depicted in Figure 13i.[112] Utilizing this setup, homogenous WS$_2$ single-layer flakes can be obtained (Figure 13j). As compared with the conventional horizontal furnace, the vertical configuration with gas flow from top to bottom can redistribute the temperature and gas field more effectively to eliminate any position dependence in the growth chamber, resulting in the more uniform deposition of WS$_2$ films.

3.4. CVD using Solid-State Sources

In this method, solid-state materials, such as powders and pallets, are used as the source materials or in combination with other gas phase or liquid phase precursors. Due to the diverse solid-state sources, especially for W, there would be a wide range of precursor materials and process parameters, possibly tuned to create large-area single-crystal 2D WS$_2$ film; therefore, this method has been one of the most intensively studied techniques. As anticipated, there are many parameters that can affect the growth of WS$_2$ here. In order to have a good understanding of this method, the following discussion will be arranged into several sub-sections: setup configurations, nucleation seed promoters, growth substrate, function of sulfur, function of hydrogen, and doping.

3.4.1. Setup Configurations

The basic experimental configurations for the CVD synthesis of WS$_2$ using solid-state sources can be classified into four types as shown in Figure 14a. Among all, both low pressure CVD (LPCVD) and ambient pressure CVD (APCVD) are commonly employed for these WS$_2$ growth. Type-I and type-II schemes are widely explored in literature owing to their setup simplicity. Type-I configuration is beneficial for the wafer-scale synthesis of 2D materials, as the substrate size is only limited by the diameter of the tube furnace. In fact, wafer-scale uniform monolayer WS$_2$ films (Figure 14b) have been realized by Lan...
et al. utilizing the type-I scheme. A schematic of their experimental setup is shown in Figure 14c. In order to independently tune the evaporation temperatures of S and WO$_x$ sources as well as the deposition temperature, the multi-zone tube furnace was used. LPCVD and high evaporation temperature (above 900 °C) are then employed to maintain a high partial pressure of WO$_x$ for the growth of WS$_2$. For type-II configuration, it is not suitable for the scalable synthesis because the substrate size is restricted by the crucible placed below the substrate. The advantage of this configuration is that the W source is very close to the substrate such that the high partial pressure of W-containing precursor can be achieved even using APCVD and relatively low evaporation temperature (≈800 °C). For type-III configuration, since the melting point of the precursor of WO$_x$ is very high, the WO$_x$ powder has to be placed in the sealed-end of the quartz tube to sustain a higher partial pressure of WO$_x$ vapor during the growth. Furthermore, when the WO$_x$ powder is put right next to the growth substrate (Figure 14d), very large single-crystal monolayer WS$_2$ films can be obtained as demonstrated by Cong et al. (Figure 14e). The disadvantage of type-I to type-III configurations is that the W precursors easily get sulfurized into WS$_2$ during the growth, also known as precursor poisoning, which would subsequently block the continuous feeding of W-containing vapor to the substrate. As a result, type-IV scheme is proposed, where the W precursor and S precursor are independently introduced into the chamber without any mixing before reaching the substrate.

3.4.2. Nucleation Seed Promoters

The direct nucleation of 2D WS$_2$ on smooth substrate is difficult because of the weak van der Waals interaction between the 2D WS$_2$ and the substrate. In order to promote the nucleation of WS$_2$ on the growth substrate, various kinds of seed materials are adopted, such as aromatic materials, WO$_x$, and Au nanoparticles. Perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS) is a kind of aromatic materials that is widely used as a seed promoter for the growth of TMDs. PTAS can offer a heterogenous nucleation site for the formation of TMD nuclei and hence increases the surface adhesive force of TMD molecules, which lead to the nucleation and lateral growth of TMDs. Lee et al. illustrated the successful synthesis of high-quality monolayer WS$_2$ flakes by using the PTAS seed promoter as given in Figure 15a. Moreover, WO$_x$ nanoparticles are also
3.4.3. Growth Substrates

The substrate used for the growth can strongly affect the quality of obtained 2D WS₂ films. Till now, various kinds of substrates have been employed for the synthesis of WS₂, such as SiO₂/Si, sapphire, BN, graphene, and Au foils. The most widely used substrate is SiO₂/Si; however, WS₂ flakes grown on SiO₂/Si have random orientations. On the other hand, sapphire, BN, and graphene have the hexagonal symmetry, similar to WS₂, which can enable the epitaxial growth of WS₂ on these substrates. Unfortunately, it is found difficult to realize the epitaxial growth of WS₂ on sapphire because there is a weak interaction between WS₂ and sapphire as compared with the successful case of growing MoS₂ on sapphire. As depicted in Figure 16a–c, high-quality epitaxial WS₂ flakes have been achieved on graphene and BN substrates. When using Au foils as growth substrates, very large single-layer WS₂ flakes can be obtained (Figure 16d). The reason for the growth of large single-crystal monolayer WS₂ flakes is that Au can lower the barrier energies for sulfurization of WO₃ through the formation of sulfur atoms. As a result, a very low concentration of WO₃ and S can lead to the formation of WS₂. Furthermore, the solubility of W in Au is very low that constrains the segregation and precipitation of W at the surface of Au foils, leading to the formation of single-layer WS₂. After the Au foil surface is fully covered by WS₂, no additional layers can be formed on WS₂ surface owing to the loss of catalytic activity of Au by the passivation of WS₂. This way, the growth of monolayer WS₂ on Au foil is a self-limiting process. In addition, the use of Au foil substrates would allow the roll-to-roll transfer of fabricated single-layer WS₂ onto flexible substrates as shown in Figure 16e, which is beneficial for applications in flexible electronics and optoelectronics.

3.4.4. Halide Salts

The initial study of adding salts to the powder precursor for the synthesis of TMDs is carried out by Li et al. Later, Zhou...
et al. extended the method to the synthesis of a huge variety of TMD materials.136 Adding salts can actually reduce the melting temperature of metal precursors, or form metal oxychlorides, facilitating the growth of 2D TMDs.136 For WS\textsubscript{2}, the formation of volatile WO\textsubscript{2}Cl\textsubscript{2} and WOCl\textsubscript{2} species is believed to be the reason for the reduced synthesis temperature.135,137 Except lowering the growth temperature, the crystal size is enlarged as compared with that without using salts,135 attributable to the increased concentration of gaseous metal species. Recently, it was found that adding Na can enhance the kinetics for the chemical formation of monolayer MoS\textsubscript{2}, which can be ascribed to the reduction of energy barrier for MoS\textsubscript{2} growth.118 Considering the similarity between WS\textsubscript{2} and MoS\textsubscript{2}, it may also reduce the growth barrier of growing WS\textsubscript{2} by incorporating Na. In the same way, fluorine is observed to have the ability reducing the energy barrier for WS\textsubscript{2} growth, leading to the formation of large single-crystal WS\textsubscript{2} flakes.139 In this regard, the elements in the salts, such as Na and Cl, are witnessed to lower the energy barrier for the synthesis of WS\textsubscript{2}, with further investigations needed.

\subsection{3.4.5. The Function of Sulfur}

For the growth of WS\textsubscript{2} with WO\textsubscript{3} and S powders, the introduction time and amount of S vapor are very important for controlling the morphology of final products. Rong et al. found that very large single-layer WS\textsubscript{2} triangular domains (up to 370 \textmu m) could be grown with the suitable S introduction time.140 Yue et al. achieved high-quality synthesis of large single-crystal monolayer WS\textsubscript{2} (\approx 233 \textmu m) by both tuning the introduction of S and the distance between the sources and substrates.141 Later, Zafar et al. carried out systematic investigation on the role of introduction time of S and vapor ratio between S and W precursors.142 A conventional CVD using powder sources is employed in their work (Figure 17a). The feeding rate of S can be controlled by tuning its introduction time (Figure 17b). With low feeding rate of S, monolayer WS\textsubscript{2} can be synthesized, while multilayer WS\textsubscript{2} flakes are formed under high feeding rate of S as demonstrated in Figure 17b. In explicit, the S source would lead to the formation of WO\textsubscript{3}−x that is volatile and further sulfurized into WS\textsubscript{2}−x in the substrate surface. When a low concentration of WO\textsubscript{3}−x species is provided to the growth of monolayer WS\textsubscript{2}, only atomic scale WS\textsubscript{2} monolayer clusters are yielded on the substrate. While a higher concentration of WO\textsubscript{3}−x is delivered, multilayer WS\textsubscript{2} growth is resulted. Furthermore, the shape of WS\textsubscript{2} flakes can be controlled by tuning the amount of S used (Figure 17c), which is realized by changing the amount of S powder relative to that of W precursor. Triangle WS\textsubscript{2} flakes are obtained in the S-rich environment, whereas hexagonal WS\textsubscript{2} flakes are grown in the S-deficient environment. The geometrical shape of WS\textsubscript{2} flakes is found to be associated with their different atomic edge arrangements. Usually, the WS\textsubscript{2} flakes adopt a hexagonal shape with alternative S- and W-terminated edges. With the increase of S loading, the probability of S atoms meeting and bonding with W-edges increases, leading to the faster growth of W-terminated edges. As a result, the W-terminated edges become shorter and shorter, producing triangle WS\textsubscript{2} flakes. Also, the size of WS\textsubscript{2} flakes increases with the S exposure time (Figure 17d), which corresponds to the growth duration.

\subsection{3.4.6. The Function of Hydrogen}

Except the etching effect of H\textsubscript{2} on WS\textsubscript{2} flakes,99 the use of H\textsubscript{2} can as well manipulate the shape of WS\textsubscript{2} flakes during the synthesis as illustrated Zhang et al.125 Without the introduction of H\textsubscript{2} flow, the WS\textsubscript{2} flakes show the asymmetrical triangular shape with jagged edges under pure Ar carrier gas flow as shown in Figure 18a. Since (0001) sapphire with hexagonal symmetry is used as the substrate, the obtained shape of WS\textsubscript{2} flakes should not be caused by the lattice anisotropy of Al\textsubscript{2}O\textsubscript{3} (0001), but probably be mediated by a dynamic process. With the introduction of H\textsubscript{2} gas flow, nearly equilateral triangular and intersecting triangular shaped single-layer WS\textsubscript{2} with straight edges is grown (Figure 18b). In particular, H\textsubscript{2} chemically reduces WO\textsubscript{3} into volatile WO\textsubscript{3}−x, making a WO\textsubscript{3}−x rich environment for the WS\textsubscript{2} growth. Thus, the growth of WS\textsubscript{2} with H\textsubscript{2} flow is considered to be mediated by a kinetic effect, resulting in the thermodynamically stable geometry of a regular triangular shape.

As the (0001) sapphire has the same hexagonal symmetry with the WS\textsubscript{2} basal plane, it is possible to realize epitaxy growth of WS\textsubscript{2} flakes on (0001) sapphires. However, the interaction between WS\textsubscript{2} and sapphire is too weak to achieve the epitaxy growth.117 Ji et al. revealed that high concentrations of H\textsubscript{2} gas (>40\%) during the CVD growth could assist the alignment of triangular WS\textsubscript{2} grains along the c-plane sapphire substrate.127 The shape evolution of WS\textsubscript{2} flakes as a function of H\textsubscript{2} concentration is compiled in Figure 18c. Without the introduction of H\textsubscript{2}, the WS\textsubscript{2} flakes have a random orientation. Relatively high H\textsubscript{2} concentrations (>40\%) can improve the WS\textsubscript{2} alignment. Furthermore, the introduction of H\textsubscript{2} can reduce the formation of multilayer WS\textsubscript{2} at the center of each domains due to the etching effect of H\textsubscript{2}. In contrast, WS\textsubscript{2} flakes grown with pure Ar gas flow show the presence of WO\textsubscript{3} and/or WO\textsubscript{3}S species as compared with the pure WS\textsubscript{2} flakes formed with the introduction of H\textsubscript{2} gas flow. H\textsubscript{2} can etch the unstable defects during the synthesis, leading to the formation of pure phase WS\textsubscript{2}. The Al-rich sapphire surface in H\textsubscript{2}-assisted synthesis is the reason for the well-aligned WS\textsubscript{2} flakes. DFT calculations further indicate that the WS\textsubscript{2}-sapphire distance for the Al- and O-terminated surface is 0.15 and 0.29 nm, respectively, suggesting the enhanced interaction between WS\textsubscript{2} and Al-terminated sapphire surface for the above phenomenon observed.

\subsection{3.4.7. Doping}

In CVD, substitutional doping can be realized by adding doping precursors in the source materials. Usually, WS\textsubscript{2} exhibits the n-type conducting behavior due to defects formed during synthesis, such as S vacancies. For practical applications, p-doped WS\textsubscript{2} is also needed. Among many possible dopants, Nb doping is widely studies for the p-type doping in WS\textsubscript{2}. Gao et al. utilized the NbCl\textsubscript{5} precursor for the growth of Nb-doped monolayer WS\textsubscript{2}.143 Due to the low melting point of NbCl\textsubscript{5}, it is placed near the S powder (Figure 19a). As a result, Nb-doped
WS₂ flakes are grown (Figure 19b). The doping concentration is estimated to be about 6.7%. However, this doping scheme had a poor control on the doping concentration. In order to have a better control on the doping concentration, Jin et al. used WO₃, NaCl, and NbCl₅ mixture as the metal precursors as presented in Figure 19c. Except lowering the growth temperature, NaCl can also act as a chemical trap of NbCl₅, preventing the premature volatilization of NbCl₅ before reaching the growth temperature. In addition, self-reduction reaction of Nb⁵⁺ to Nb⁴⁺ can occur in the presence of NaCl, which leads to the formation of S–Nb–S bond at low temperatures due to the small Gibbs free energy. In this way, large Nb-doped WS₂ flakes can be grown with well-controlled doping concentration. Alternatively, Feng et al. adopted a three-zone tube furnace and utilized NbO₂ as the doping precursor as illustrated in Figure 19d. The doping concentration of Nb in WS₂ can be varied from 0% to 15% by tuning the amount of NbO₂ and WO₃ powders. Unlike the triangular or hexagonal shape of usually observed WS₂ flakes, the as-grown WS₂ flakes show the rhomboidal shape (Figure 19e). This rhomboidal shape is considered to be originated from its special growth mechanism, where WO₃ is first nucleated on the substrates with a rhomboidal shape and the shape is maintained during the Nb–W–S growth. WS₂ can also form alloy with other TMDs by CVD method, which shows promising applications in electronics and optoelectronics.

Although much progresses have been made, CVD method using solid-state sources still cannot achieve an excellent control in the doping concentration down to atomic level for WS₂ as compared with other doping schemes in high-performance electronics.
The advantages and disadvantages of these vapor-phase methods for the large-area 2D WS₂ synthesis are compiled in Table 2. The development of large single domain size and large area WS₂ film are shown in Figure 20 as well. Apart from the recent advances, there are several unresolved issues, especially to achieve the well-controlled thickness for WS₂ films, with more detailed investigation needed.

4. Applications

4.1. FETs

FETs is the key components in modern integrated circuits (ICs). With the continuous scaling down of the characteristic length of transistors for ICs, many problems appear, such as short channel effect, which will seriously constrain the down scaling of transistors. In order to continue the Moore’s law, new device structures and new materials are explored. 2D semiconductors are anticipated to be the promising channel materials than can solve the problems due to their moderate band gap and ultrathin thickness. Furthermore, because of the ultrathin, transparent, and high mobility characteristics of 2D semiconductors, they are also promising in thin film transistors for display applications. In this regard, the research on 2D semiconductors in FETs is intensively studied. Among many candidates, 2D WS₂ is predicted to have the superior electron mobility than most of the counterparts in TMDs, being advantageous for high-performance transistors. Owing to the relatively large band gap of 2D WS₂, their transistors always show a large ON/OFF current ratio (> 10⁵). Nevertheless, the measured mobility of WS₂-based transistors is still low as compared with the theoretical prediction, especially for the CVD-synthesized 2D WS₂ channel. There are many factors that can affect the performance of WS₂ transistors, such as defects, dielectric, environmental adsorbates, etc. To further improve
the performance of WS₂ transistors, various methods are implemented, including contact engineering, dielectric engineering, doping, and so on. In this section, the discussion will be divided into sub-sections to go over the details in the area of environment effect, material quality engineering, interfacial engineering, and contact engineering sequentially.

4.1.1. Environment Effect

Actually, the adsorbates from the environment can significantly affect the performance of 2D WS₂-based transistors. The absorption of H₂, O₂, and H₂O on the surface of WS₂ channels is observed to result in the p-type doping.\(^{[157]}\) Therefore, 2D WS₂-based transistors operated in air without any passivation would give the weak n-type or p-type conducting behavior.\(^{[122,155]}\) Moreover, the quantity of adsorbates is determined by the pressure. Ovchinnikov et al. studied the pressure-dependent electrical behavior of WS₂-based transistors in details.\(^{[155]}\) The transfer curves of a bilayer WS₂ transistor under different pressures are shown in Figure 21a. Obviously, the conducting behavior changes from the weak p-type to the strong n-type as the pressure decreases, indicating the strong effect of adsorbates on the electrical properties of 2D WS₂ transistors. Due to the strong effect of ambient molecules, most of the electrical properties of 2D WS₂ transistors reported in the literature are recorded under vacuum in order to eliminate the impact of adsorbates.

4.1.2. Material Quality Engineering

The material quality of WS₂ is important for channels of high-performance transistors. The structural defects, such as S vacancies, is the intrinsic reason for drastically reduced carrier mobility.\(^{[158,159]}\) Thus, the structural defects have to be repaired in order to realize high mobility 2D WS₂ transistors. Jiang et al. found that the S vacancy can be effectively repaired by N₂ plasma treatment.\(^{[159]}\) With the N₂ plasma treatment, N atoms preferentially fill the S vacancies and form W-N bonds due to the more stable adsorption energy. As shown in Figure 21b, the performance of the multilayer WS₂ transistor is much enhanced by N₂ plasma treatment. The corresponding electron mobility increases from 29.7 to 184.2 cm² V⁻¹ s⁻¹, while the ON/OFF ratio increases from 10⁵ to 10⁶. In addition, the electrical contact quality is improved. The untreated transistor shows the obvious Schottky contact with nonlinear \(I_{DS-V_{DS}}\) curves near 0 V (Figure 21c), whereas the N₂ plasma-treated device yields the ohm-like contact with linear \(I_{DS-V_{DS}}\) curves near 0 V (Figure 21d). The enhanced contact quality is attributed to the changes of Fermi level upon N₂ plasma treatment. The enhanced carrier mobility can be ascribed to the reduced charge scattering from S vacancies and reduced effective electron mass with N doping.\(^{[159]}\) Moreover, this method is effective for a wide range of thicknesses as shown in Figure 21e. Thiol chemical functionalization can also be used to repair S vacancies and to improve the interface, leading to the significant reduction of charge impurities and traps.\(^{[158,160]}\) As depicted in Figure 21f, the mobility of single-layer WS₂ transistor is much enhanced.

Table 2. Comparison between different synthesis methods.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Single crystal size</th>
<th>Thickness control</th>
<th>Film uniformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfurization of seed film</td>
<td>Thermal/e-beam evaporation</td>
<td>10–50 nm</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Magnetron sputtering</td>
<td>10–50 nm</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>ALD</td>
<td>10–50 nm</td>
<td>Excellent</td>
</tr>
<tr>
<td></td>
<td>Spin coating</td>
<td>10 nm to 200 μm</td>
<td>Moderate</td>
</tr>
<tr>
<td>Vapor source method</td>
<td>MOCVD</td>
<td>200 nm</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>ALD</td>
<td>10 nm to 50 μm</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td>Conventional gas phase CVD</td>
<td>100 nm to 10 μm</td>
<td>Poor</td>
</tr>
<tr>
<td>Solid-state sources CVD</td>
<td>1 μm to 1 mm</td>
<td>Poor</td>
<td>Good</td>
</tr>
</tbody>
</table>
after the thiol chemical functionalization. The low temperature mobility increases from 140 to 337 cm² V⁻¹ s⁻¹, and the room temperature mobility increases from 49 to 83 cm² V⁻¹ s⁻¹.

4.1.3. Interfacial Engineering

The typical mobility of 2D WS₂ transistors is always much lower than the ones of theoretical prediction and bulk materials. The defect states in the SiO₂ layer on the substrate can lead to the localization of charge carriers in TMDs, which is one of the main factors limiting the device mobility. Thus, other substrates with reduced defect states are preferred. Hexagonal BN is an ideal choice here because of its atomically flat surface, large band gap, and low density of charge impurities. In fact, the performance of 2D WS₂ transistors is much enhanced when using BN as the substrate. Iqbal et al. systematically studied the effect of BN on the performance of monolayer WS₂ transistors. Generally, three kind of structures were adopted: WS₂ on SiO₂, WS₂ on BN, and WS₂ sandwiched between two BN layers (Figure 22a). Even though the transistors show almost the same ON/OFF current ratio, their electron mobility values are different accordingly (Figure 22b–d). With only the BN substrate, the mobility increases from 80 to 163 cm² V⁻¹ s⁻¹. By sandwiching the WS₂ between two BN layers, the mobility increases to 185 cm² V⁻¹ s⁻¹. Temperature-dependent mobility also indicates the enhanced mobility with the sandwiched structure (Figure 22e). The sandwich structure does not only provide a flat and low-defect substrate, but also give a protection layer to minimize unwanted environmental effects.

Figure 20. Schematic of the development of vapor phase synthesis of WS₂. The upper side indicates the development of single domain size, the lower side indicates the development of the growth of large area WS₂ film by various methods. a) Reproduced with permission. b) Reproduced with permission. c) Reproduced with permission. d) Reproduced with permission. e) Reproduced with permission. f) Reproduced with permission. g) Reproduced with permission. h) Reproduced with permission. i) Reproduced with permission. j) Reproduced with permission. k) Reproduced with permission. l) Reproduced with permission. m) Reproduced with permission. n) Reproduced with permission. o) Reproduced with permission. p) Reproduced with permission. q) Reproduced with permission. r) Reproduced with permission. s) Reproduced with permission. t) Reproduced with permission. u) Reproduced with permission. v) Reproduced with permission. w) Reproduced with permission. x) Reproduced with permission. y) Reproduced with permission. z) Reproduced with permission.

Figure 21. Pressure and WS₂ quality-dependent electrical properties of WS₂ transistors. a) Pressure-dependent transfer curves of a bilayer WS₂ transistor. b) Transfer curves of multilayer WS₂ transistors with and without N₂ plasma treatment. c) Output curves of a multilayer WS₂ transistor without N₂ plasma treatment. d) Output curves of a multilayer WS₂ transistor with N₂ plasma treatment. e) Mobility of WS₂ transistors with and without N₂ plasma treatment as a function of thickness. f) Mobility of WS₂ transistors with (device A2) and without (device A1) the thiol chemical functionalization as a function of temperature. a) Reproduced with permission. b–e) Reproduced with permission. Copyright 2014, American Chemical Society. f) Reproduced with permission. Copyright 2019, John Wiley and Sons.
highest mobility value of the optimal device structure is found to be 214 cm² V⁻¹ s⁻¹. Apart from BN, high-k dielectrics can also be used to reduce the interfacial charge traps, leading to the increased mobility.[158]

4.1.4. Contact Engineering

The electrical contact property is important for WS₂ transistors, which determines the efficiency of charge injection/collection between electrodes and WS₂ channels. For ideal transistors, ohmic contact is preferred. However, it is difficult to realize ohmic contact in 2D materials-based transistors.[166−169] The interfacial states always lead to Fermi pinning, which makes it impossible to match the work function of WS₂ channels by choosing metal electrodes with the appropriate work function. In this regard, various methods have been adopted to alleviate this problem.

Annealing: Annealing can improve the contact quality between 2D materials and metals, reducing the contact resistance with increased carrier mobility. Ovchinnikov et al. found that vacuum annealing can reduce the contact resistance, leading to enhanced carrier mobility.[155] As shown in Figure 23a, the mobility of single-layer WS₂ devices increases with the increasing annealing time for both two- and four-terminal device configuration. The four-terminal mobility reaches a saturation value of ~40 cm² V⁻¹ s⁻¹ after 60 h annealing, whereas the two-terminal mobility continues to improve gradually. Kim et al. found that more than 5000 times reduction in the contact resistance of WS₂ transistors with Ti electrodes can be realized by the high pressure hydrogen annealing (HPHA).[170] After HPHA treatment, the average Schottky barrier height (SBH) reduces from 0.18 to 0.13 eV. The possible reason for the reduction of SBH is associated with the hydrogenation reaction at the Ti–WS₂ interface, which results in the Fermi-level depinning like behavior.

Graphene Electrodes: The Fermi energy of graphene can be tuned by applying a gate voltage that can be used to obtain a low SBH. In addition, graphene is a 2D material free of dangling bonds. Thus, the contact of graphene with WS₂ does not induce any interfacial states, preventing the occurrence of Fermi level pinning. Aji et al. used multilayer graphene as electrodes and the performance of such monolayer WS₂ transistors was much enhanced.[171] As compared with Ti/Au electrodes, WS₂ transistor with multilayer graphene shows much enhanced performance as given in Figure 23b–d. The average carrier mobility of the device with multilayer graphene electrodes is 27 cm² V⁻¹ s⁻¹ with the highest value of 50 cm² V⁻¹ s⁻¹. The average mobility of the device with Ti/Au electrodes is only ~5 cm² V⁻¹ s⁻¹. This much-enhanced mobility is attributed to the tunable Fermi level of multilayer graphene as presented in Figure 23e.

Doping: Doping can move the Fermi level toward conduction (n-type doping) or valance (p-type doping) band edge. The effective barrier height is then reduced when metal contacts with the highly doped semiconductor due to carrier tunneling in addition to thermionic emission (Figure 23f).[172] Because the intrinsic defects of WS₂ always lead its n-type conductivity, n-type doping is hence widely utilized as a strategy to reduce the contact resistance between WS₂ channels and metal electrodes.[52,53,172,173] Khalil et al. used LiF as a n-dopant for few layers WS₂ and found that the contact resistance of subsequently fabricated devices could be much reduced as compared with the undoped ones.[52] As shown in Figure 23g, the corresponding contact resistance reduces from 31.3 to 0.9 kΩμm. Furthermore, the mobility significantly increases from 13.2 to 34.7 cm² V⁻¹ s⁻¹ due to the improvement of source–drain current. Other dopants, such as KI and Cu,[53,173] can also lead to n-type doping that reduces the contact resistance with improved mobility.

Metal Interfacial Layer: The direct metal deposition can lead to the substantial damage in 2D semiconductors due to the kinetic energy transfer or chemical reaction between metal atoms and 2D semiconductors, again leading to Fermi level pinning.[174–176] In order to reduce the damage caused by direct deposition of metal, Wang et al. used low melting point metal of In as a buffer layer, which could yield the formation of clean interface between In and 2D semiconductors without any
As a result, the contact resistance is much reduced as compared to conventional electrode deposition. The few layers WS₂ transistor with In electrodes shows much enhanced performance over the ones with Ti contact. The device mobility increases from \(1.2 \pm 1 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}\) (devices with Ti contact) to \(83 \pm 10 \text{ cm}^2\text{V}^{-1}\text{s}^{-1}\) (devices with In contact). Furthermore, the In metal usually forms stable alloys readily with other metals, which can be used to adjust the work function of electrodes in order to facilitate efficient carrier injection. Recently, Liu et al. found that the deposition of a thin layer of Cu between WS₂ and Ti/Au metals could reduce the contact resistance because of the lowering of SBH. This SBH reduction is mainly attributed to a synergetic interaction among exchange repulsion, covalent bonding, and charge redistribution near the interface. Importantly, the localized Cu contact also results in a strong n-type doping in WS₂ at the contact region, reducing the contact resistance.

Dielectric Interfacial Layer: Fermi level pinning is difficult to be avoided using the conventional metal contact. With the aim to minimize this adverse effect, an ultrathin dielectric interfacial layer is inserted between metals and 2D semiconductors. Park et al. used ALD TiO₂ as the interfacial layer (Figure 23h) and observed that a low SBH could be obtained after the introduction of this interfacial layer due to Fermi level depinning. Because of this depinning, both n- and p-type WS₂ transistors can be obtained by simply choosing metals with the appropriate work function, such as Ti for n-type transistors and Pd for p-type transistors.

Edge Contact: Van der Waals 2D materials have layered structures; therefore, in principle, they have the passivated surface without any dangling bonds. A van der Waals gap would exist between 2D semiconductors and metals when adopting the top contact scheme, which becomes a barrier for charge injection. In this case, edge contact is preferred because it can eliminate the van der Waals barrier owing to the existence of covalent bonding between 2D semiconductors and contact materials in the lateral direction. In any case, the direct realization of clean edge contact for TMDs is difficult because of its ultrathin nature. In order to realize this edge contact scheme, Guimarães et al. grew monolayer WS₂ between two monolayer graphene electrodes by CVD. The contact resistance of the edge contacted monolayer WS₂ is only \(\approx 30 \text{kΩ} \mu\text{m}\) that is much reduced as compared with that of top contact devices.
Table 3. Performance parameters of typical WS$_2$ transistors.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Electrode</th>
<th>Dielectric/structure</th>
<th>Contact resistance [kΩ μm]</th>
<th>Room temperature mobility [cm2 V$^{-1}$ s$^{-1}$]</th>
<th>ON/OFF ratio</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 nm</td>
<td>Ti/Au</td>
<td>PMMA/WS$_2$/Al$_2$O$_3$/SiO$_2$</td>
<td>-</td>
<td>29.7 (N$_2$ plasma processed)</td>
<td>10^4</td>
<td>[159]</td>
</tr>
<tr>
<td>Monolayer</td>
<td>Ti/Pd</td>
<td>SiO$_2$</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>[158]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Al$_2$O$_3$/SiO$_2$</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MPS/Al$_2$O$_3$/SiO$_2$</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Al/Au</td>
<td>SiO$_2$</td>
<td>-</td>
<td>80</td>
<td>10^7</td>
<td>[165]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN/SiO$_2$</td>
<td>163</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BN/WS$_2$/BN/SiO$_2$</td>
<td>214</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Au</td>
<td>SiO$_2$</td>
<td>-</td>
<td>≈40</td>
<td>10^5</td>
<td>[155]</td>
</tr>
<tr>
<td>Bilayer</td>
<td></td>
<td></td>
<td>≈33</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Ti/Au</td>
<td>SiO$_2$</td>
<td>-</td>
<td>≈5</td>
<td>10^3</td>
<td>[171]</td>
</tr>
<tr>
<td>Graphene</td>
<td></td>
<td></td>
<td>27</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 nm</td>
<td>Cr/Au</td>
<td>SiO$_2$</td>
<td>0.9</td>
<td>34.7 (doped)</td>
<td>4.8 × 103</td>
<td>[52]</td>
</tr>
<tr>
<td>Few-layer</td>
<td>Ti/Au</td>
<td>SiO$_2$</td>
<td>2.4</td>
<td>83</td>
<td>106</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>In/Au</td>
<td></td>
<td>2.4</td>
<td>83</td>
<td>106</td>
<td>[74]</td>
</tr>
<tr>
<td>Few-layer</td>
<td>Ni/Au</td>
<td>SiO$_2$</td>
<td>0.7</td>
<td>60 (Cl-doped)</td>
<td>107</td>
<td>[72]</td>
</tr>
<tr>
<td>Few-layer</td>
<td>Ti/Au</td>
<td>SiO$_2$</td>
<td>2.2×10^6</td>
<td>4.9</td>
<td>1.6×10^6</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>Ti/Au</td>
<td></td>
<td>7.4×10^4</td>
<td>21.9 (Cu-doped)</td>
<td>2.5 × 106</td>
<td>[73]</td>
</tr>
<tr>
<td>Cu/Ti/Au</td>
<td></td>
<td></td>
<td>10^5</td>
<td>26.3</td>
<td>9.1 × 106</td>
<td></td>
</tr>
</tbody>
</table>

To have a better understanding of these WS$_2$ transistors, the performance parameters are extracted from typical literatures as given in Table 3.

4.2. Memristors

A memristor is a two-terminal device, where its resistance depends highly on the magnitude and polarity of the applied voltage as well as the time period of the applied voltage.[186–188] The behavior of a memristor is essentially similar to biological synapses in neural networks.[186,189] Thus, it shows potential applications in neuromorphic computing.[186,190] WS$_2$ has been utilized in memristors, which exhibit excellent device performance.[191–193] For example, Yan et al. fabricated memristors using WS$_2$ flakes that give fast switching time and low program current in the ON state.[193] The structure of a memristor is depicted in Figure 24a, in which the Pd electrode is connected to the positive electrode and the Pt electrode is grounded. After detailed device measurement, the clear resistance switching behavior is observed (Figure 24b). The device has the fast switching speed from high resistive state (HRS) to low resistive state (LRS) (within 13 ns) and vice versa (within 14 ns). Furthermore, the energy consumptions of the device are low for both HRS to LRS (299.8 fJ) and vice versa (125.6 fJ). Notably, the device can mimic basic biological synaptic functions, showing great potentials in low power neuromorphic computing. The resistance switching behavior is proposed to be dominated by the generation of S and W vacancies and electron hopping between vacancies. The S and W vacancy defect states are located at deep levels based on the DFT calculation, which is responsible for the low leakage current. For improving the performance of memristors, hybrid structures...
are adopted, such as ZnO-vertical aligned WS$_2$ (Figure 24c)$^{[191]}$ and Zr$_2$O-WS$_2$ (Figure 24d).$^{[192]}$ In specific, the vertically aligned 2D layered structure of WS$_2$ confined the generation/redistribution of oxygen vacancies within the well-defined path and shape, leading to good cycle-to-cycle ($\approx 10^{10}$) and device-to-device reproducibility.$^{[193]}$ The ZrO$_2$-WS$_2$ stacked structure memristors exhibit the highly stable resistance switching and concentrated ON and OFF state voltage distribution, high speed (≈ 10 ns), and excellent endurance ($\geq 10^7$ cycles).$^{[192]}$ These superior properties are mainly ascribed to the different ion transport rates of ZrO$_2$ and WS$_2$, which limits the rupture/rejuvenation of conductive filaments to the bilayer interface region, greatly reducing the randomness of conductive filaments of the memristor.

4.3. Optoelectronics

Due to the excellent optical properties of WS$_2$, it shows promising applications for optoelectronics, such as photodetectors, LEDs, lasers, and optical modulators.

4.3.1. Photodetectors

Photodetector is a device that converts light signals into electrical signals, which is one of the key components in optoelectronic systems. Because of the strong light–matter interaction and high carrier mobility of WS$_2$, it has attracted much attention for photodetectors.$^{[194]}$ By reason of the ultrathin nature of single-layer WS$_2$, the photoresponsivity of monolayer WS$_2$ photodetector is low, on the orders of several mA W$^{-1}$$^{[49,122,195,196]}$. Similar to its electrical properties, the photoresponsivity of monolayer WS$_2$ is also sensitive to environment (Figure 25a,b).$^{[122]}$ The photocurrent measured under vacuum is larger than that in ambient. This reduced photocurrent in ambient is caused by the adsorbates from ambient, which drastically reduces the lifetime of photogenerated carriers. The enhanced photocurrent measured under vacuum is associated with the increased photo-carrier lifetime. However, the corresponding response speed is reduced because the response time is proportional to photo-carrier lifetime. In addition, the photocurrent can be modulated by gate voltage (Figure 25a), where this modulation of photoresponse is mainly caused by the increased carrier mobility and reduced contact barrier at the contact under large positive gate voltages.$^{[197–199]}$ Furthermore, photogating effect also contributes to the enhanced photoresponse that is clearly manifested from the shift of transfer curves under light illumination (Figure 25a).$^{[194,200,201]}$ As a result, a large photoresponsivity of 22.1 A W$^{-1}$ can be realized in single-layer WS$_2$ device.$^{[195]}$ Because the contact barrier constrains the collection of photo-carriers in a photoconductor, a low contact barrier is highly preferred for WS$_2$-based photodetectors. Unlike metal contact, the work function of graphene can be well controlled by electrostatic gating such that graphene can then be employed as low contact barrier electrodes for WS$_2$. Tan et al. used graphene as electrodes for monolayer and bilayer WS$_2$ photodetectors (Figure 25c). It is evident that large photoresponsivities could be realized for both monolayer (2.5 A W$^{-1}$) and bilayer (3.5 A W$^{-1}$) WS$_2$ photodetectors under high illumination power density of 2.5×10^4 mW cm$^{-2}$$^{[202]}$. The contact barrier can as well be lowered under light luminescence for short channel photodetectors.$^{[57]}$ Remarkably, only the photo-carriers near the contact interface would contribute to fill the traps states and lower the Schottky barrier. In this case, the longer channel length adds additional series resistance to photodetectors, leading to reduced device performance (Figure 25d). With a channel length of 200 nm, Fan et al. achieved a high photoresponsivity of 20 A W$^{-1}$ under a large source–drain bias.

Figure 25. WS$_2$ photodetectors. a) Transfer curves of the monolayer WS$_2$ phototransistor measured under vacuum. b) Transfer curves of the monolayer WS$_2$ phototransistor measured in ambient. c) Schematic of the graphene contacted monolayer WS$_2$ photodetector. d) Responsivity as a function of bias voltage and channel length. e) Normalized photocurrent as a function of bending cycles. f) Responsivity and detectivity as a function of wavelength. a,b) Reproduced with permission.$^{[122]}$ Copyright 2015, Royal Society of Chemistry. c) Reproduced with permission.$^{[202]}$ Copyright 2016, American Chemical Society. d) Reproduced with permission.$^{[203]}$ Copyright 2016, John Wiley and Sons. e) Reproduced with permission.$^{[69]}$ Copyright 2018, Springer Nature. f) Reproduced with permission.$^{[206]}$ Copyright 2016, Springer Nature.
(4 V) for monolayer WS$_2$ photodetectors.[27] Originating from the good flexibility of monolayer WS$_2$, it is also suitable for flexible photodetectors. Lan et al. found that monolayer WS$_2$ flexible photodetectors yield the excellent robustness to bending, which can maintain 89% of their photocurrent after 3000 bending cycles (Figure 25e).[49] As compared with atomically thin WS$_2$ photodetectors with thick WS$_2$ show better photoresponse that is partly due to enhanced optical absorption and carrier mobility of thick films.[203–206] For example, Zeng et al. showed that the photodetector with the 25 nm thick polycrystalline WS$_2$ film exhibited a responsivity of 53.3 A W$^{-1}$ at 365 nm (Figure 25f).[206]

In order to improve the performance of WS$_2$-based photodetectors, various kinds of device structures are adopted. Since WS$_2$ is a kind of van der Waals layered material, it can be used to fabricate heterostructures without considering the limitation of lattice mismatch between WS$_2$ films and substrates.[207] Thus, WS$_2$-based heterostructure photodetectors are widely investigated. 2D–2D heterostructures are observed to provide the excellent hetero-interface due to both of the passivated surfaces of each 2D materials, delivering excellent photoresponse.[208–212] For example, Xue et al. developed a scalable production technique for WS$_2$-MoS$_2$ stacked heterostructure arrays and achieved heterostructure photodetectors (Figure 26a) with good performance with a high responsivity of 2.3 A W$^{-1}$ at 450 nm.[211] At the same time, graphene has very large mobility, which can be used as the carrier transport layer in a photodetector. Lan et al. found that graphene-WS$_2$ heterostructure photodetectors indeed exhibited much enhanced photoresponse with a high responsivity of 950 A W$^{-1}$.[330] Furthermore, with an ionic gating, the photoresponsivity of graphene-WS$_2$ heterostructures is even higher (106 A W$^{-1}$) with fast response as demonstrated by Mezew et al.[213] The highly mobile ions and the nanoscale Debye-length dimension of ionic polymers can screen off charge traps and tune the Fermi level of graphene, leading to the much enhanced responsivity and speed. Because of the passivated surface of WS$_2$, it can integrate with 3D materials as well, which can combine the excellent optoelectronic properties of both materials, leading to enhanced performance. Besides, organic–inorganic perovskite materials have excellent optical properties.[214–217] Combining the advantages of both perovskite materials and WS$_2$ films, high-performance photodetector can be achieved. Ma et al. fabricated WS$_2$-CH$_3$NH$_3$PbI$_3$ heterostructure photodetectors (Figure 26b), where they showed excellent photoresponse with the high responsivity (17 A W$^{-1}$), on/off ratio ($\approx 10^5$), and fast response (75 ms).[218] These enhanced photoresponse are anticipated to come from the improve crystallinity of CH$_3$NH$_3$PbI$_3$ directly grown on WS$_2$ as well as the efficient interfacial charge transfer.

To expand the photosensitive spectrum, large band gap and small band gap materials can be stacked with WS$_2$ to enhance its photoresponse to short wavelength and long wavelength irradiation. For instance, stacking monolayer WS$_2$ on ZnO films can enhance the UV photoresponse several times as compared with ZnO photodetectors.[219] This enhanced UV response is attributed to the type I heterostructure obtained so that photocarriers in ZnO can transfer effectively to the WS$_2$ side and get collected by the electrode. Spin coating a layer of PbS quantum dots on single-layer WS$_2$ can also expand the response spectrum to IR region. Yu et al. demonstrated that WS$_2$-Pb$_x$S$_{1−x}$ photodetectors (Figure 26c) exhibited a high responsivity of 14 A W$^{-1}$ at 808 nm with a bandwidth of 396 Hz.[220] Integrating 2D materials with Si as well provides a facile approach to fabricate high-performance photodetectors by taking the advantages of both materials. In this manner, 2D-Si heterostructure photodetectors have been intensively investigated.[221] The photodetector based on WS$_2$-Si heterostructures (Figure 26d) has been constructed by Lan et al., which shows the excellent photodetection performance with a maximum responsivity of 5.7 A W$^{-1}$ at 660 nm and a fast response speed of 670 µs.[84]

Moreover, to enhance the photoresponsivity and reduce the dark current, floating gate memory structure is proposed for

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure26.png}
\caption{Schematic of different kinds of WS$_2$-based photodetectors. a) WS$_2$-MoS$_2$ heterostructure. b) WS$_2$-CH$_3$NH$_3$PbI$_3$ heterostructure. c) WS$_2$ decorated with PbS quantum dots. d) WS$_2$-Si heterostructure. e) WS$_2$ floating gate photodetector. f) WS$_2$ decorated with In atoms with edge contacted graphene electrode. a) Reproduced with permission.[212] Copyright 2016, American Chemical Society. b) Reproduced with permission.[211] Copyright 2016, John Wiley and Sons. c) Reproduced with permission.[220] Copyright 2017, American Chemical Society. d) Reproduced with permission.[84] Copyright 2016, American Chemical Society. e) Reproduced with permission.[222] Copyright 2016, John Wiley and Sons. f) Reproduced with permission.[225] Copyright 2019, American Chemical Society.}
\end{figure}
building photodetectors. As shown in the device structure in Figure 26e, Au nanoparticles are placed between tunneling and blocking dielectric layers, which act as a charge trapping layer, suppressing the dark current. As a result, the photodetector shows the excellent performance with an ultralow dark current \((10^{-11} \text{ A})\), a high photoresponsivity \((1090 \text{ A W}^{-1})\), and a high detectivity \((3.5 \times 10^{15} \text{ Jones})\). The optical absorption of WS\(_2\) can be much enhanced by metal nanoparticle-induced plasmonic effect. Thus, the photoresponse of WS\(_2\) can be improved when incorporated with metal nanoparticles. In particular, Liu et al. found that Au nanoparticles decorated WS\(_2\) films exhibited enhanced photoresponse with a high responsivity of 1050 A W\(^{-1}\) at 590 nm. In order to reduce the contact resistance and enhance the photogating effect, Yeh et al. designed a special structure (Figure 26f), which consists of edge-connected graphene electrodes and In atoms decorated WS\(_2\) films. This device exhibits a large gain \((6.3 \times 10^4)\), a large responsivity \((2.6 \times 10^3 \text{ A W}^{-1})\), and an ultrafast response speed \((40-65 \mu \text{s})\).

In atoms decorated on WS\(_2\) can trap photogenerated holes, leading to a large photogating effect.

To have a better understanding of these WS\(_2\) photodetectors, the performance parameters of WS\(_2\) photodetectors and WS\(_2\)-based heterostructure photodetectors are extracted from typical literatures as given in Tables 4 and 5.

4.3.2. LEDs

Monolayer WS\(_2\) is a direct band gap material with large exciton binding energy that are ideal for LEDs. Because of the extremely large gate capacitance of the ionic liquid gated FET, WS\(_2\) transistor can be gated into n- and p-type conductivity at low gate voltages. In this case, bipolar injection can be realized in ionic gated transistors as shown in Figure 27a. Under the bipolar injection condition, obvious electroluminescence (EL) can be observed from the optical microscope.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Electrode material</th>
<th>(V_{th} \text{ [V]})</th>
<th>(V_{ph} \text{ [V]})</th>
<th>(L \text{ [\mu m]})</th>
<th>Environment</th>
<th>(\lambda \text{ [nm]})</th>
<th>(R \text{ [A W}^{-1}])</th>
<th>(D^* \text{ [Jones]})</th>
<th>Speed [s]</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monolayer</td>
<td>Al</td>
<td>20</td>
<td>0</td>
<td>30</td>
<td>Ambient</td>
<td>532</td>
<td>2.4 \times 10^{-4}</td>
<td>-</td>
<td><4.5 \times 10^{-3}</td>
<td>[122,195]</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>Vacuum</td>
<td>1.2 \times 10^{-2}</td>
<td>-</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>60</td>
<td>Vacuum</td>
<td>22.1</td>
<td>-</td>
<td>0.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Ti/Au</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>Ambient</td>
<td>532</td>
<td>5.2 \times 10^{-4}</td>
<td>4.9 \times 10^{9}</td>
<td><5.6 \times 10^{-4}</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Graphene</td>
<td>5</td>
<td>0</td>
<td>0.2</td>
<td>Ambient</td>
<td>532</td>
<td>2.5</td>
<td>9.9 \times 10^{10}</td>
<td>-</td>
<td>[202]</td>
</tr>
<tr>
<td>Bilayer</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Monolayer</td>
<td>Au</td>
<td>4</td>
<td>0</td>
<td>0.2</td>
<td>Ambient</td>
<td>532</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>[27]</td>
</tr>
<tr>
<td>Monolayer</td>
<td>Graphene</td>
<td>5</td>
<td>30</td>
<td>1</td>
<td>Ambient</td>
<td>532</td>
<td>121</td>
<td>-</td>
<td>-</td>
<td>[256]</td>
</tr>
<tr>
<td>6 nm</td>
<td>Ti/Au</td>
<td>30</td>
<td>0</td>
<td>50</td>
<td>Vacuum</td>
<td>458</td>
<td>2.2 \times 10^{-3}</td>
<td>-</td>
<td>5.3 \times 10^{-3}</td>
<td>[76]</td>
</tr>
<tr>
<td>20 nm</td>
<td>Ti/Au</td>
<td>0.02</td>
<td>-2</td>
<td>1</td>
<td>Ambient</td>
<td>630</td>
<td>0.27</td>
<td>-</td>
<td>-</td>
<td>[203]</td>
</tr>
<tr>
<td>60 nm</td>
<td>Pt</td>
<td>9</td>
<td>0</td>
<td>100</td>
<td>Ambient</td>
<td>635</td>
<td>0.51</td>
<td>1.9 \times 10^{9}</td>
<td>4.4</td>
<td>[205]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25 nm</td>
<td>Ti/Au</td>
<td>5</td>
<td>0</td>
<td>100</td>
<td>Ambient</td>
<td>365</td>
<td>53.3</td>
<td>1.22 \times 10^{11}</td>
<td>-</td>
<td>[206]</td>
</tr>
<tr>
<td>4 nm</td>
<td>Cr/Au</td>
<td>0.02</td>
<td>0</td>
<td>1.1</td>
<td>Vacuum</td>
<td>520</td>
<td>1090</td>
<td>3.5 \times 10^{11}</td>
<td>10.7</td>
<td>[222]</td>
</tr>
</tbody>
</table>

Table 4. Parameters of some typical photodetectors based on WS\(_2\) from literatures.
image (the red point in Figure 27b). It is clear that EL spectrum of monolayer WS₂ coincides with the PL spectrum (Figure 27c). Furthermore, bilayer WS₂ shows very weak EL as compared with the single-layer WS₂, indicating the indirect band gap of bilayer WS₂. However, ionic gating is not suitable for the large-scale device fabrication since this device structure requires additional energy consumption. In addition, the space charge distribution resulted from the electrostatic doping is usually inhomogenous. In the same time, the p-i-n structure is usually used for organic LEDs, which can also be used for WS₂-based LEDs. Yang et al. adopted the p-i-n structure for the fabrication of WS₂-based LEDs (Figure 27d). In their work, indium tin oxide (ITO) is used as the n-type material, and single-layer WS₂ is functioned as the intrinsic material, forming a p⁺-Si/i-WS₂/n-ITO heterostructure. The EL emission occurs within the region in the vicinity of ITO electrode. As shown in Figure 27e, under forward bias, the holes from p⁺-Si are injected into the monolayer WS₂. The barrier, originating from the difference of electron affinities and band gaps of WS₂ and Si, would block the injected holes from leaking into the n-ITO region. Similarly, electrons are injected from n-ITO into monolayer WS₂. The injected electrons and holes give rise to efficient radiation recombination in the monolayer WS₂, leading to light emission. Furthermore, the EL spectra exhibit the current-dependent circular polarization (Figure 27f). The degree of circular polarization is defined as η = [I(σ⁺) − I(σ⁻)]/[I(σ⁺) + I(σ⁻)], where I(σ⁺) and
and $I(\sigma)$ are the integrated intensities of σ and σ' circularly polarized EL components, respectively. The η value of the entire EL spectrum decreases with the increasing driven current (Figure 27g), whereas the η values of exciton (X^0), trion (X^-), and defects related bound exciton (X^b) components also decrease with the increasing driven current (Figure 27h). The degree of circular polarization of the total EL is very high (81%) at the low driven current of 0.5 μA, indicating the promising applications for valley phototons. The origin of the current-dependent polarization EL is attributed to the different electron–hole overlap at the K and K' valleys induced by the built-in potential associated with carrier injections and the presence of valley-polarized 2D electron gas because of carrier injections.\(^{229,230}\) Due to the easy tuning of the Fermi level of graphene by electrostatic gating, Shen et al. designed an asymmetric structure by stacking monolayer WS\(_2\), graphene and BN to fabricate LEDs (Figure 27i).\(^{28}\) With this special structure, both positive and negative bias can lead to light emission (Figure 27j, k).

4.3.3. Lasers

Both passive mode-locking and Q-switching fiber lasers have attracted interest in both industry and scientific research.\(^{231}\) The most popular schemes for such pulsed lasers is the use of saturable absorbers (SAs). Although the band gap of WS\(_2\) is larger than the optical communication band, it still shows the excellent saturable absorption in that band (Figure 28a).\(^{232–234}\) The possible reasons for the saturable absorption for photons below the band gap of WS\(_2\) are defect-induced band gap reduction and coexistence of semiconducting and metallic states.\(^{232,235,236}\) The most common setup for mode-locking and Q-switching fiber lasers with WS\(_2\) SAs is shown in Figure 28b. The laser cavity consists of a gain fiber (such as Er-doped fiber) and a standard single mode fiber. A pump light is injected into the cavity via a wavelength division multiplexer. The cavity birefringence is adjusted by two polarization controllers. By tuning the birefringence in the laser cavity, the wavelength position of the spectral loss can be varied so that the loss of Q-switching or mode locking can be tuned. As a result, Q-switching or mode-locking lasers can be realized.\(^{237}\)

The repetition rate of the pulsed laser in mode-locking operation is determined by the cavity length, whereas the repetition ratio of the Q-switching pulse is determined by pump power (Figure 28c).\(^{238}\) For mode-locking mode, using different gain fibers, the pulsed laser operated at different wavelengths are achieved, such as 1.06,\(^{235}\) 1.55,\(^{232}\) and 1.91 μm.\(^{234}\) In addition, WS\(_2\) SAs can be used to generate dark solitons in Er-doped fiber lasers as demonstrated by Liu et al.\(^{219}\) The generated dark solitons have a center wavelength of 1530 nm (Figure 28d) with a repetition rate of 116.5 Hz. Furthermore, the pulsed laser shows the good signal-to-noise ratio, which is better than 94 dB. Recently, Du et al. found that the graphene-WS\(_2\) heterostructure showed the better performance than WS\(_2\) acting as SA for the mode-locking laser.\(^{233}\) The pulse duration of graphene-WS\(_2\) SA-based pulsed laser is 660 fs (Figure 28e), which is smaller than that of WS\(_2\) SA-based pulsed laser (Figure 28f). Q-switching lasers based on WS\(_2\) SAs also exhibit the excellent performance.\(^{240–242}\) For instance, Wang et al. reported that Q-switching pulsed laser with WS\(_2\) SA had a pulse of 430 ns, a pulse energy of 5.4 μJ, and a repetition rate from 64 to 90 kHz operating at 1.9 μm.\(^{240}\) All these results indicate that WS\(_2\) is an attractive material for good SAs and has promising applications in pulsed lasers.

Except serving as a saturable absorber in pulsed lasers, 2D WS\(_2\) can also act as a gain medium in lasers. Since monolayer WS\(_2\) is a semiconductor with direct band gap and strong excitonic features, the exciton in monolayer WS\(_2\) can allow the formation of long-lived population inversion, which leads to optical gain and possible stimulated emissions.\(^{243}\) The first report on monolayer WS\(_2\)-based excitonic laser was reported by Ye et al.\(^{244}\) For single-layer TMD-based lasers, high optical

Figure 28. Pulsed lasers based on WS\(_2\). a) Normalized transmission of WS\(_2\) saturable absorbers (SA). b) Typical setup for passive Q-switching and mode-locking pulsed lasers. c) Repetition frequency as a function of pump power for the Q-switching laser. d) Dark soliton spectrum of the mode-locking laser. e,f) Autocorrection trace of the mode-locked pulses for graphene-WS\(_2\) and WS\(_2\) SA-based lasers, respectively. a) Reproduced with permission.\(^{212}\) Copyright 2015, Springer Nature. b,c) Reproduced with permission.\(^{227}\) Copyright 2015, Optical Society of America. d) Reproduced with permission.\(^{219}\) Copyright 2016, Chinese Laser Press. e,f) Reproduced with permission.\(^{233}\) Copyright 2020, Optical Society of America.
mode confinement and high-quality factor (Q) microcavities is crucial.\cite{244,245} This way, WS$_2$ is embedded between two dielectric layers (i.e., Si$_3$N$_4$/WS$_2$/hydrogen silsequioxane), forming a micro-disk cavity. Due to the strong light confinement and large modal gain, lasing can be achieved at 10 K with an emission line at 612.2 nm when the device is optically pumped with an ultrashort laser at 473 nm. The low temperature operation of the laser is not suitable for practical applications whereas the room temperature operation is highly desired. Shang et al. achieved the room-temperature low-threshold lasing from monolayer WS$_2$ activated vertical-cavity surface emitting laser.\cite{246} The structure of the laser is shown in Figure 29a. Dielectric oxides are used to fabricate the half-wavelength-thick cavity and distributed Bragg reflectors. Monolayer WS$_2$ is embedded in the center of the cavity as the gain medium. The cavity photon mode locates at 639.5 nm with a width of 1.0 ± 0.2 nm, indicating a typical Q value of ≈640. Once the device is pumped by a continuous-wave 532 nm laser, lasing at 637 nm is achieved for the pumping power density exceeding 6 nW. The typical emission spectrum is depicted in Figure 29b. In addition, the lasing emission is mainly from the cavity surface from the z-direction-dependent light intensity obtained from confocal PL measurements (Figure 29c,d). In order to increase the active region and the lasing beam quality, Ge et al. designed the photonic crystal surface-emitting laser (PCSEL) cavity.\cite{247} The schematic of the PCSEL cavity is illustrated in Figure 29e. Monolayer WS$_2$ is directly transferred onto the cavity surface as shown in the inset of Figure 29e. The fundamental cavity mode of the cavity locates at 637 nm with a linewidth of 0.25, corresponding to a Q value of 2500. Under optical pumping (450 nm), the transition from spontaneous emission to lasing can be obviously observed from the light-in light-out curve (Figure 29f). The resonant peak locates at 637 nm and the linewidth narrows down to 0.2–0.3 above 144 W cm$^{-2}$ of the pump power density (Figure 29f). Due to the PCSEL structure, the emission is surface-normal emission in the far field (Figure 29g). Although much progresses have been made, the realization of compact and electrically pumped laser is still a big challenge.

4.3.4. Optical Modulators

As demonstrated above, the optical refractive index of 2D WS$_2$ can be tuned by electrical gating even at the optical communication band. Datta et al. utilized this property to fabricate a phase modulator based on single-layer WS$_2$.\cite{54} A Mach-Zehnder interferometer (MZI) structure is used for the phase modulator. A capacitor of TMD-HfO$_2$-ITO is formed on the SiN waveguide. It is found that only the phase of TE mode, of which the electrical field is in plane with WS$_2$, can be adjusted. With applied voltage on one arm of the MZI, the interference pattern at the MZI output is changed. The modulation efficiency ($V_{πL}$)
of the phase modulator is estimated to be 1.33 V cm. Importantly, the modulator performance can be further enhanced by capping the arm with high-index SU-8 photosensitive resist, leading to increased optical mode overlap with monolayer WS\textsubscript{2}. As a result, the change of refractive index of the composite waveguide increases and the modulation efficiency reduces to 0.8 V cm. In this case, the modulation efficiency already outperforms state-of-the-art LiNbO\textsubscript{3} modulators with V\textsubscript{3d} in the range of 1.8–2.4 V cm-1168,169. In addition, the modulation efficiency can as well be increased by reducing the dielectric thickness and embedding the monolayer WS\textsubscript{2} within the waveguide mode96

5. Summary and Outlook

In summary, the comprehensive review on the fundamental properties, wafer-scale synthesis methods, and various kinds of electronic and optoelectronic applications of 2D WS\textsubscript{2} have been presented in a systematic and thorough approach. This review does not only serve as a design guideline to enhance and elevate the material quality of 2D WS\textsubscript{2} films via enhanced synthesis approaches, but also provides valuable insights to various strategies to improve their device performances. Even though there has been some progress achieved in the area of synthesis and device applications, there are still significant challenges and opportunities for the further development of the synthesis methods of WS\textsubscript{2} and devices.

At first, the vast practical applications require the reliable production methods of 2D WS\textsubscript{2}. However, wafer-scale synthesis of high-quality 2D WS\textsubscript{2} with controlled thickness is still a big hurdle. At the moment, large-area monolayer WS\textsubscript{2} film can be readily obtained by different CVD methods. But, the quality of these CVD grown WS\textsubscript{2} films is still not sufficient for industrial deployment. Wafer-scale single-layer WS\textsubscript{2} merged from large single domain flakes with aligned orientation is highly desired. Despite the thickness of WS\textsubscript{2} can be roughly controlled by the seed layer sulfurization technique, MOCVD or ALD, the required film uniformity for large-scale devices is not yet achieved. Also, the domain size obtained from those methods is small, restricting the carrier mobility of WS\textsubscript{2}. Therefore, the deep understanding of growth behaviors of WS\textsubscript{2} is urgently needed, especially to develop a strictly layer-by-layer growth scheme with the large single-crystal domain size.

Second, high temperature is always needed for the synthesis of high-quality WS\textsubscript{2} films, where this required temperature is not necessarily compatible with the standard COMS technology. In this case, it is essential to develop low temperature synthesis techniques or effective process schemes to transfer WS\textsubscript{2} from growth substrates to target substrates. Although there have been low temperature synthesis methods developed, such as ALD, the quality of obtained 2D WS\textsubscript{2} is regrettably poor, which is not suitable for most of the device applications. Fortunately, transferring high-quality WS\textsubscript{2} from growth substrates to target substrates is feasible at present. Among various established transfer methods, the dry transfer method is preferred due to the little damage and contamination resulted to the 2D materials230. Nevertheless, the effectiveness of this particular method is highly dependent on the adhesive force between substrates and 2D materials235. The strong interaction between WS\textsubscript{2} films and substrates is vital for the transfer of high-quality WS\textsubscript{2}167. Thus, developing effective, nondestructive, and contamination-free transfer methods is critical.

Third, the effective contact scheme between metal electrodes and 2D WS\textsubscript{2} films is not maturely developed, where the reliable electrical contact is important for all device applications. Until now, there are several contact schemes explored for reducing the contact resistance between metal electrodes and WS\textsubscript{2} channels. It is still a challenge to achieve reliable and ohmic contact for WS\textsubscript{2} devices. Developing a versatile and universal electrical contact scheme is a must.

Moreover, although the light–matter interaction of 2D WS\textsubscript{2} is strong, the light absorption is inevitably low owing to its atomic thickness, restricting its photodetection performance. The incorporation of plasmonic and/or photonic structures can enhance the light absorption of WS\textsubscript{2} device with improved photodetection performance. Nonetheless, the enhanced spectrum range is limited arising from the characteristics of corresponding plasmonic and/or photonic structures. Introducing defects to induce photoconductive gain would also lead to enhanced photodetection. But the response speed becomes low and the response with light intensity becomes nonlinear, which is not beneficial for practical applications. New device structures have to be investigated to substantially elevate the photoresponsivity with wider spectrum and faster response.

The research of 2D WS\textsubscript{2} for applications in memristors, LEDs, lasers, optical modulators, and other optoelectronic devices is indeed in their infancy. Based on the existing findings, it is evident that 2D WS\textsubscript{2} materials have the bright potentials for next-generation high-performance electronics and optoelectronics. More works are urgently needed to be done in order to develop WS\textsubscript{2} toward practical applications with enhanced functionalities in the near future.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2019YFB2203504), Innovation Research Groups of the National Natural Science Foundation of China (grant no. 61420002), the National Natural Science Foundation of China (grant nos. 61475030, 61605024, 61775031, and 61975024), Fundamental Research Funds for the Central Universities (ZYGX2018056), UESTC Foundation for the Academic Newcomers Award, the Open Fund of Wuhan National Laboratory for Optoelectronics (2018WNOLOKFO13), the General Research Fund (CityU 11204618), and the Theme-based Research (T42-103/16-N) of the Research Grants Council of Hong Kong SAR, China.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

chemical vapor deposition, electronics, optoelectronics, synthesis, WS\textsubscript{2}
Changyong Lan received his B.S. degree in Applied Physics from the University of Electronic Science and Technology of China (UESTC) in 2007 and his Ph.D. degree in Physics from Nanjing University in 2012. Then, he joined UESTC as a lecturer. From 2016 to 2019, he worked as a post-doctoral researcher in Johnny C. Ho’s group at City University of Hong Kong. Currently, he is an associate professor of Optical Engineering at UESTC. His research interests are the controlled synthesis of low-dimensional functional materials and their applications in electronics and optoelectronics.

Chun Li received the Ph.D. degree in Physics from Wuhan University, China, in 2008. After that, he worked at National Institute of Material Science (NIMS, Japan), University of California, San Diego (UCSD, USA), and North Carolina State University (NCSU, USA) as a postdoctoral researcher. In September 2012, he joined the University of Electronic Science and Technology of China (UESTC) as a full professor. His current research interests mainly focus on 2D materials for integrated optoelectronics.

Johnny C. Ho received his B.S. with high honors in Chemical Engineering in 2002 and his M.S. and Ph.D. in Materials Science and Engineering from the University of California, Berkeley, in 2005 and 2009, respectively. From 2009 to 2010, he worked as a post-doctoral research fellow in the nanoscale synthesis and characterization group at Lawrence Livermore National Laboratory, California. Currently, he is a professor of Materials Science and Engineering at City University of Hong Kong. His research interests focus on the synthesis, characterization, integration, and device applications of nanoscale materials for various technological applications, including nanoelectronics, sensors, and energy harvesting.