In situ electrochemical conversion of cobalt oxide@MOF-74 core-shell structure as an efficient and robust electrocatalyst for water oxidation

 Wei Gao, Wangyan Gou, Renjie Wei, Xiuming Bu, Yuanyuan Ma, Johnny C. Ho

A R T I C L E I N F O

Article history:
Received 29 July 2020
Revised 27 August 2020
Accepted 4 September 2020

Keywords:
Electrocatalysis
Metal-organic framework
In situ activation
Oxygen evolution
Cobalt oxide

A B S T R A C T

In recent years, applications of metal-organic frameworks (MOFs) in electrocatalysis, including hydrogen and oxygen evolution reactions, have attracted increasing attention for renewable energy conversion. Herein, the fabrication of core-shell structured Co₃O₄@MOF-74 catalysts is proposed and realized with the tunable thickness of MOF shell layers, where Co₃O₄ nanowire arrays prefabricated on Ni foam are employed as the template as well as the metal source to react with organic ligands to achieve the MOF layers. Importantly, the optimized Co₃O₄@MOF-74 structures exhibit much enhanced catalytic activities towards oxygen evolution reaction (OER), requiring an impressively low overpotential of 285 mV to afford a current density of 50 mA cm⁻² together with a small Tafel slope of 43 mV/dec, as compared with the pristine Co₃O₄ sample. By investigating the Co₃O₄@MOF-74 structure after OER stability test, the conversion of MOF-74 into cobalt hydroxide shell layers is thoroughly characterized and confirmed, suggesting the in situ electrochemical conversion of MOF structures during the electrochemical process. All these results do not only uncover the changes in crystalline and chemical structures of MOFs for electrocatalytic reactions, but also help to comprehend and design novel MOFs as efficient and robust electrocatalysts for practical utilization.

© 2020 Published by Elsevier Ltd.

1. Introduction

Electrocatalytic oxygen evolution reaction (OER), also known as water oxidation, is an important half-reaction for applications in water electrolysis and rechargeable metal-air battery; however, it is a sluggish and complex process for the conversion between electrical and chemical energies, requiring highly active and robust noble-metal anode catalysts. [1–3] Since then, low-cost transition metal-based electrocatalysts (e.g. Co-based materials as the electrodes for water electrolysis) have been extensively explored as effective alternatives to these noble-metal catalysts. [4, 5] Very recently, another new class of materials, metal-organic frameworks (MOFs), have been widely considered as novel catalyst candidates for various heterogeneous catalytic reactions because of their advantages of high porosity, large surface areas, abundant active metal sites and tunable functionalized linkers. [6–9] Preparation of nanosized catalysts with the compositions of alloys, oxides, sulfides, phosphides, selenides and such from MOFs by post-treatment has been broadly investigated. [10,11,13–17,19] In order to prepare these MOF-derived electrocatalysts, high temperature treatments are generally adopted to form metal-based compounds, accompanied with the carbonization of linkers and ligands and collapse of the original MOF structures.

In addition to MOFs-derived structures, direct applications of transition metal-based MOFs and their integration with other materials as advanced electrocatalysts have been also proposed and realized; this way, the advantages of high porosity and plentiful active metal sites of MOF structures can be fully utilized. [20–24] Various single and multi-component metal-based (e.g. Fe, Co, Ni, Mn and Cu) MOFs are hence developed as electrocatalysts for different electrochemical reactions, such as hydrogen evolution, oxygen evolution, oxygen reduction and so on. [25,33,35,37–39,41,43,45,46] For example, Zhao et al. reported the excellent activity of ultrathin nanosheets of NiFe-based MOF arrays supported on Ni foam as bifunctional electrocatalysts for both hydrogen and oxygen evolution reactions in alkaline solution.
Moreover, the wide diversity of ligands and linkers makes it efficient to design and modulate the structural, electronic and physiochemical properties of MOFs. Several typical ligands, including 1,4-benzenedicarboxylate (or 1,4-benzenedicarboxylic acid, BDC), 2,5-dihydroxyterephthalate (or 2,5-dihydroxyterephthalic acid, H$_2$DOBDC), 1,3,5-benzenetricarboxylate acid (or BTC), and 2-methylimidazolate (or MeIM) have been employed to construct transition metal-based MOFs, such as ZIF-67, and MOF-74 that can function as efficient electrocatalysts. [12, 19, 32, 36, 40, 44] The coordination between divalent transition metals and H$_2$DOBDC constructed the family of MOF-74 with a general formula of M$_2$(H$_2$DOBDC)(H$_2$O)$_2$ (M= Mg, Mn, Fe, Co, Ni, and Zn). [18] Structural features of one-dimensional channels with aperture diameters of around 1 nm, different divalent metals nodes and corresponding bonding strengths with H$_2$DOBDC ligands enabled their applications in electrocatalysis. Unfortunately, there are still substantial challenges in achieving sufficient conductivity and chemical stability for the practical deployment of MOF structures for electrocatalysis. [30, 47] In this regard, rational design of MOF structures and their composites are required to overcome the above issues and to further boost up their electrocatalytic properties.

At the same time, employing the transition metal-based nanostructures as the templates to epitaxially fabricate MOF layers has been lately established as a facile method to not only improve their conductivity but also make the best use of their intrinsic properties for practical utilization. [19,48,53-55] Typically, the ZnO@ZIF-8 core-shell structured sensor was in situ fabricated from the surface reaction between dissolved Zn$^{2+}$ ions from ZnO and ligand in solvents to form the outer layer of MOF. [53] Herein, we successfully prepare the CoO$_2$@MOF-74 core-shell structure by using the CoO$_2$ nanowire arrays on Ni foams as the templates as well as the material cores, while the cobalt-based MOF-74 serves as the outer shell layers. Simply by controlling the solvothermal cycles, the thickness of MOF-74 shell layers can be easily regulated between 4.5 and 17.8 nm. When configured as the anode catalysts for OER, the CoO$_2$@MOF-74 on Ni foam electrocatalysts exhibit the significantly improved activity. The best-performed CoO$_2$@MOF-74 sample yields an impressively low overpotential of only 285 mV to drive a current density of 50 mA cm$^{-2}$ with a Tafel slope of 43 mV/dec, as compared with the pure CoO$_2$ on Ni foam (337 mV and 76 mV/dec, respectively). Further characterization suggests the MOF-74 shells would be self-converted into cobalt hydroxide layers during OER process, which can be attributed to the in situ electrochemical activation of MOF layers to become cobalt hydroxides as the active catalytic centers in alkaline solution. All these results evidently indicate that the highly active and stable electrocatalysts can be achieved by the in situ electrochemical conversion of CoO$_2$@MOF-74 into CoO$_2$@Co(OH)$_2$ core-shell structures for efficient water oxidation.

2. Experimental section

2.1. Materials preparation

Preparation of CoO$_2$ nanowire arrays on Ni foams. CoO$_2$ nanowire arrays on Ni foams were prepared by using the simple hydrothermal method followed by thermal annealing. Typically, Ni foam pieces (purchased from Suzhou Taiji Material Technology Company, China, 1 × 3 cm) were washed with 10% diluted HCl solution, water and ethanol successively with ultrasonication, and then dried at 60 °C. Then, the Ni foams were placed into a 20 mL Teflon-lined autoclave with a 15 mL mixture solution containing 1 mmol of Co(NO$_3$)$_2$·6H$_2$O, 1 mmol of NH$_4$F and 1 mmol of urea. The autoclave was sealed and next heated at 120 °C for 8 h in an electrical oven. After cooling to room temperature, the as-prepared precursor was washed with distilled water and ethanol alternatively for several times, and then dried at 60 °C. The CoO$_2$ nanowire arrays on Ni foams were eventually obtained by annealing the above precursor at 300 °C with a temperature ramping rate of 5 °C/min for 2 h in air.

Preparation of the CoO$_2$@MOF-74 core-shell structure. To coat the MOF-74 layer on CoO$_2$, the solvothermal method was adopted without adding any metal salts. Typically, a piece of CoO$_2$/Ni foam (1 × 1.5 cm) was placed into a 20 mL Teflon-lined autoclave containing 5 mg of 2,5-dihydroxyterephthalic acid (H$_2$DOBDC) and 10 mL of N,N-dimethylformamide (DMF). Then, the autoclave was sealed and heated at 150 °C for 10 h. After reaction, the sample was washed with ethanol and DMF alternatively, and then dried in the vacuum oven. To increase the thickness of MOF-74 layer, the above-mentioned solvothermal process was repeated for several cycles with the same amount of H$_2$DOBDC in DMF.

2.2. Characterizations

Transmission electron microscopy (TEM) images were obtained from a Hitachi 7700 microscope with an accelerating voltage of 120 kV and high-resolution TEM (HRTEM) images were collected using a JEOL JEM 2100F microscope with an accelerating voltage of 200 kV. Scanning electron microscopy (SEM) images were acquired from a Philips LX 30 FEG microscope with an accelerating voltage of 20 kV. X-ray diffraction (XRD) patterns were measured using a Rigaku powder X-ray diffractometer with the Cu Kα radiation. X-ray photoelectron spectra (XPS) were collected from an X-ray photoelectron spectroscopy system (ULVAC-PHI Inc., model 5802, Kanagawa, Japan) with Cu Kα as the excitation source. Fourier transform infrared (FTIR) analyses were acquired using a Thermo Scientific Nicolet 6700 Fourier transform infrared spectroscopy.

2.3. Electrochemical measurements

All the electrochemical tests were performed on a CHI 660D electrochemical workstation using a three-electrode setup to measure the activity and stability of various samples, where the as-prepared samples on Ni foam, Ag/AgCl (3 M KCl) electrode and graphite rod were employed as the working electrode, reference electrode and counter electrode, correspondingly. The active geometric areas of various samples immersing into the electrolyte were defined by sealing with the silicone rubber. Before linear sweeping voltammetry (LSV) measurement, 10 cyclic voltammetry (CV) cycles were performed first. Then, the LSV method was used with a scan rate of 10 mV/s in 1.0 M KOH solution to obtain the polarization curves at room temperature. The stability tests of electrocatalysts for OER were performed using chronoamperometry method with a fixed overpotential of 400 mV. The potential scale with respect to reverse hydrogen electrode (RHE) was corrected by the Nernst equation, where $E_{RHE} = E_{Ag/AgCl} (3 \text{ M KCl}) + 0.0592 \times \text{pH} + 0.197 \text{(V)}$. Electrochemical impedance spectroscopy (EIS) was measured under a fixed overpotential of 400 mV with a frequency range between 100 kHz to 0.1 Hz. All polarization curves were IR corrected unless otherwise mentioned. The produced amount of oxygen gas was measured under a fixed current density of 50 mA cm$^{-2}$, using a gas chromatography (Techcomp GC 7900D) with the thermal conductivity detector, whereas the Faradaic efficiency was calculated from the measured amount of oxygen and the theoretical value of oxygen.

3. Results and discussion

The preparation process of CoO$_2$@MOF-74 core-shell structures is depicted in Scheme 1. To be specific, CoO$_2$ nanowire arrays are
first fabricated on Ni foams as the templates as well as the material cores by the hydrothermal method followed by the thermal annealing in ambient air. Figure S1 shows the typical SEM images of well-aligned Co$_3$O$_4$ nanowire arrays successfully grown on Ni foams, while Fig. 1a presents the TEM image demonstrating the uniform nanowire morphology of Co$_3$O$_4$ with the length of several micrometers and the width of about 100 nm. As revealed in the XRD pattern in Fig. 2, the nanowire arrays are confirmed to have the cubic Co$_3$O$_4$ structure (PDF #43–1003). After that, the cobalt-based MOF-74 shell layers are fabricated on the Co$_3$O$_4$ nanowire templates by the solvothermal method using H$_4$DOBDC as the ligand and Co$_3$O$_4$ as the metal source without adding any other metal salts. The etching of Co$_3$O$_4$ nanowires by H$_4$DOBDC would result in Co ions on the surface of Co$_3$O$_4$, followed by the surface chemical reaction between H$_4$DOBDC and surface Co ions for the formation of MOF-74 layers [53]. After one solvothermal cycle, there is an apparent shell layer with a thickness of 4.5 ± 0.8 nm ob-

![Scheme 1](image-url)
Scheme 1. Synthesis schematic for the in situ transformation of Co$_3$O$_4$ into Co$_3$O$_4$@MOF-74.

![Fig. 1](image-url)
Fig. 1. Typical TEM images of (a) Co$_3$O$_4$ nanowire, Co$_3$O$_4$@MOF with (b) 1 solvothermal cycle, (c) 2 solvothermal cycles, (d) 3 solvothermal cycles and (e) 4 solvothermal cycles. (f) The dependence of the MOF layer thickness with various solvothermal cycles.

![Fig. 2](image-url)
Fig. 2. XRD patterns of Co$_3$O$_4$ and Co$_3$O$_4$@MOF-74 with various solvothermal cycles.
erved in the TEM image (Fig. 1b). However, due to the low material content of MOF-74, there are not any clear peaks indexed to the MOF-74 structure in the XRD spectrum (Fig. 2). In order to have a better knowledge on the formation of MOF-74 layers, different solvothermal cycles are performed to regulate the thickness of MOF-74 shell layers using the identical reaction condition. It is obvious that the thickness of CoO2@MOF-74 layers gets increased from 4.5 ± 0.8 nm to 8.6 ± 1.4, 12.5 ± 2.0 and 17.8 ± 4.8 nm when the reaction cycle is implemented for 1 to 4 times, respectively (Fig. 1b-1f). SEM images also confirmed the increased coating of MOF-74 layers on the CoO2 nanowire arrays after various cycles (Figure S2). Notably, there are not any noticeable particles aggregated onto the nanowires for the samples after 1 and 2 reaction cycles (Figure S2a and S2b). In contrast, large nanoparticles of MOF-74 are witnessed on the nanowire surface for the samples after 3 and 4 reaction cycles (Fig. 1c and 1d, Figure S2c), which suggests the detachment of Co ions from CoO2 nanowires, followed by the epigrowth axial growth and migration of MOF-74 to the outer radial region of nanowires. Furthermore, there is an enhancing intensity for the XRD peaks located at about 6.7° and 11.7° for the increasing MOF-74 shell thickness, where the peak locations are consistent with the simulated Co-based MOF-74 structure (Fig. 2). [56] Meanwhile, the signals that indexed to CoO2 decrease gradually as the result of the growth of MOF-74 layers. All these results indicate that the MOF-74 shell layers are evidently deposited onto the CoO2 nanowire surface by in situ conversion reaction, where H2DODBDC functioned as the ligand and CoO2 nanowires worked as the metal source as well as the hard templates to support the obtained MOF-74 shells.

The surface chemical states of Co and O in CoO2@MOF-74 are analyzed by XPS to assess their changes before and after introducing the MOF layers. For pristine CoO2, there are obvious peaks of Co 2p3/2 and 2p1/2 observed at 779.8 and 795.2 eV, respectively, which are ascribed to the oxidized Co species (Figure S3a). The additional peaks witnessed at 785.1 and 802.0 eV are related to the satellite peaks of Co, matching well with those in previous reports. [57] CoO2@MOF-74 with various solvothermal cycles exhibited positive shifts in the binding energy for Co 2p3/2 signals as compared to pristine CoO2, depicting the interaction between the CoO2 core and the MOF-74 shell. Particularly, the most significant up-shift in the Co 2p3/2 peak of about 0.6 eV is revealed for CoO2@MOF-74 grown with 2 solvothermal cycles as compared with CoO2, indicating the strong interaction between CoO2 and MOF-74. Similarly, for 0 1 s spectra, there are negative shifts in the binding energy for all CoO2@MOF-74 samples as compared with pristine CoO2, where the CoO2@MOF-74 sample grown with 2 solvothermal cycles has the maximum down-shift of about 0.3 eV, suggesting the electron-rich states of oxygen for CoO2@MOF-74 (Figure S3b). Therefore, the strong interaction between the CoO2 core and the MOF-74 shell can significantly affect and regulate the electronic structure of Co species, which is anticipated to have the substantial influence on their catalytic performance for OER. In addition, FTIR spectra of pristine CoO2 and CoO2@MOF-74 grown with 2 solvothermal cycles are measured to further demonstrate the MOF-74 shell coated on the CoO2 nanowire core (Figure S4). For pristine CoO2, a strong peak observed at 651 cm−1 is corresponded to the Co2+−O vibration with the tetrahedral structure in CoO2 [58, 59]. Another peak located at 1636 cm−1 is ascribed to the existence of absorbed molecular water. [59] In fact, for the CoO2@MOF-74 sample grown with 2 solvothermal cycles, the Co2+−O vibration peak at 651 cm−1 is also observed because CoO2 functions as the material core in this core-shell structure, while several new peaks are detected owing to the formation of MOF-74 shell layers. Specifically, the peaks located at 815 and 885 cm−1 are associated with the C−H wagging, in-plane and out-of-plane of bending modes of the benzene ring, whereas those centered at 1117 and 1198 cm−1 are assigned to the in-plane deformation of C−H bond in the benzene ring. The feature at 1413 cm−1 is caused by the stretching vibration of C = C bond in the benzene ring. The peak at 1560 cm−1 is related to the asymmetric vibration of carboxylate group in the ligand. The signal at 1242 cm−1 is corresponded to the C−N vibration of absorbed DMF solvent on the surface of MOF structure or in its channels. [56, 59] All these feature peaks observed for CoO2@MOF-74 further confirm the formation of MOF-74 shell layers, being perfectly consistent with the XRD results discussed before.

To shed light on the effect of coating these MOF shell layers on the catalytic properties towards OER, detailed electrochemical characterizations are performed in 1.0 M KOH solution using pristine CoO2 and CoO2@MOF-74 with different solvothermal cycles as the working electrodes. For CoO2@MOF-74 electrocatalysts, they are first activated by carrying out 10 CV cycles, where the typical details for CoO2@MOF-74 grown with 2 solvothermal cycles are given in Figure S5. Polarization curves with iR correction after the activation of 10 CV cycles are exhibited in Fig. 3a. The corresponding Tafel slopes derived from the polarization curves are shown in Fig. 3b. It is clear that the pristine CoO2 requires an overpotential of 336 mV to reach a current density of 50 mA cm−2 with a relatively large Tafel slope of 76 mV/dec determined. On the contrary, all the CoO2@MOF-74 electrocatalysts exhibit the better performance than the pristine CoO2 with lower overpotentials and smaller Tafel slopes (Fig. 3c). When the solvothermal process is implemented for 1 to 4 cycles, the CoO2@MOF-74 catalysts only need overpotentials of 299, 285, 310 and 318 mV to achieve a current density of 50 mA cm−2 together with Tafel slopes of 65, 43, 53 and 66 mV/dec, respectively. Among all the investigated electrocatalysts, the CoO2@MOF-74 samples grown with 2 solvothermal cycles have the best performance with the smallest overpotential and Tafel slope because of its optimal thickness of MOF shell. These particular samples are then selected as the representative CoO2@MOF-74 catalysts for subsequent studies with the aim to understand the performance enhancement of introducing the MOF-74 shell layers.

As illustrated in Fig. 4a, the CoO2@MOF-74 catalysts require an overpotential of 285 mV, while the pristine CoO2 need a larger overpotential of 336 mV to obtain the same current density of 50 mA cm−2. For CoO2@MOF-74, its Faradaic efficiency can be determined from the evolution amount of oxygen gas measured by gas chromatography during electrocatalysis with a fixed current density of 50 mA cm−2. Importantly, the amount of generated oxygen gas matches well with the theoretically calculated value, suggesting a high Faradaic efficiency of >99% during the OER process (Fig. 4b). Nyquist plots obtained from the EIS results are also exhibited in Figure S6. These plots reveal the enhanced conductivity and smaller resistance after coating the MOF shell layers onto the CoO2 nanowire arrays. The smaller radii of semi-circles at both high and low frequency regions for CoO2@MOF-74 catalysts illustrate the reduced charge transfer resistance and a lower active species adsorption resistance, significantly promoting the electron transport on the electrode/electrolyte interface and the turnover of absorbed-intermediates into oxygen, as compared with the ones of pristine CoO2. [60–62] Furthermore, the catalytic stability of the samples is also taken into a serious consideration and evaluated using the chronoanperometry method. Under a fixed overpotential of 400 mV, the initial current density is about 67 mA cm−2 for CoO2@MOF-74 (without iR correction), while it is only 46 mA cm−2 for CoO2. After a testing period of 12 h, the retained current densities become about 65 and 43 mA cm−2 for CoO2@MOF-74 and CoO2, respectively, demonstrating that the CoO2@MOF-74 catalyst has the high activity and robust catalytic stability for long-term oxygen evolution (Fig. 4c). Moreover, there is not any signif-
Fig. 3. Electrochemical activity of Co$_3$O$_4$ and Co$_3$O$_4$@MOF-74 with various solvothermal cycles. (a) Polarization curves for OER in 1.0 M KOH alkaline solution with scan rate of 10 mV/s. (b) Tafel slopes derived from (a). (c) The dependence of overpotentials [at the current density of 50 mA cm$^{-2}$] and Tafel slopes with different MOF solvothermal cycles.

Fig. 4. (a) Polarization curves for Co$_3$O$_4$ and Co$_3$O$_4$@MOF-74 with 2 solvothermal cycles in 1.0 M KOH solution. (b) Amount of theoretically calculated and experimentally measured oxygen for Co$_3$O$_4$@MOF-74 with 2 solvothermal cycles under the fixed current density of 50 mA cm$^{-2}$ in 1 M KOH solution. (c) Stability tests for Co$_3$O$_4$ and Co$_3$O$_4$@MOF-74 with 2 solvothermal cycles using the chronoamperometry method (without IR corrections). (d) Polarization curves for Co$_3$O$_4$@MOF-74 with 2 solvothermal cycles before and after stability test.

significant deterioration in polarization curves after the stability test for Co$_3$O$_4$@MOF-74 (Fig. 4d), further revealing the excellent durability of these electrocatalysts.

In previous studies, the activation and transformation of transition metal-based dichalcogenide and phosphide electrocatalysts during the electrocatalytic processes into oxides, oxyhydroxides and hydroxides have been demonstrated (e.g. the turnover of metal sulfides into metal oxides) because of the in situ oxidation of as-synthesized electrocatalysts during the electrochemical oxygen evolution process, accompanied with oxygen generation. [5, 63] In the case of MOF-based materials during the OER process, similar phenomena should also be taken into account to evaluate any potential changes of MOF structures. For instance, the transformation of Ni-MOF@Fe-MOF into NiO and Fe$_2$O$_3$ during the electrocatalytic oxygen generation process in alkaline solution was lately unveiled and thoroughly analyzed, where NiO and Fe$_2$O$_3$, instead of the MOF structures, were found to be the actual catalytic centers for OER. [52] A similar finding was as well reported for the case of Ni-based MOFs for oxygen generation and urea oxidation. [64] In this regard, detailed post-reaction characterizations are performed to investigate any changes for the structure of Co$_3$O$_4$@MOF-74. HRTEM is employed to learn the morphological and structural properties of the post-reaction sample (Fig. 5a, 5b and 5c). The morphology of Co$_3$O$_4$@MOF-74 after OER stability test is characterized by TEM, as exhibited in Figure S7 and Fig. 5a. TEM images revealed the nanowire-like morphology for Co$_3$O$_4$, which was coated with thin shells, as labeled in Figure S7. Notably, HRTEM images in Fig. 5b and 5c depicted that the interplanar spacing of 0.237 nm is ascribed to the (101) facet of Co(OH)$_2$, suggesting the Co(OH)$_2$ structured shells on the surfaces of Co$_3$O$_4$. FTIR spectra of both Co$_3$O$_4$ and Co$_3$O$_4$@MOF-74 are as well recorded before and after OER stability test. For pristine Co$_3$O$_4$, the peak at 651 cm$^{-1}$ is related to the Co$^{3+}$–O vibration with the tetrahedral structure in Co$_3$O$_4$. [58, 65] where those at 1636 and 3445 cm$^{-1}$ are ascribed to the existence of absorbed molecular water. [65] It is obvious that there is not any significant change in the struc-
ture of pristine Co$_3$O$_4$ after durability test (Figure S8). However, Co$_3$O$_4$@MOF-74 exhibits noticeable changes with a complete disappearance of above-mentioned characteristic peaks ascribing to the organic ligand of H$_2$DOBDC and DMF, indicating the loss and breakdown of MOF structures after stability test (Fig. 5d). At the same time, XPS spectra of Co and O elements are measured to investigate the changes in chemical states for Co$_3$O$_4$@MOF-74 before and after durability test. For Co 2p spectra, peaks at 780.3 and 795.4 eV are attributed to Co$^{3+}$ species, while those located at 784.0 and 797.8 eV are assigned to Co$^{2+}$ species. By integrating the deconvoluted fitting curves, the ratios of Co$^{3+}$/ Co$^{2+}$ are calculated to be 2.2 and 4.3 for Co$_3$O$_4$@MOF-74 before and after stability test, correspondingly. Therefore, more Co$^{3+}$ species are located on the Co(OH)$_2$ surface, serving as catalytic sites for OER. For O 1s spectra, the significant transformation of chemical structures of Co$_3$O$_4$@MOF-74 is witnessed by comparing among the decon- voluted three peaks after stability test. Peaks with the binding energy of 530.3, 531.3 and 532.7 eV are related to the Co–O, O = C–O and absorbed water species, respectively [34, 42, 52]. As a result of in situ conversion, the electrocatalyst after stability test exhibits three peaks as well, where those at 529.2, 530.9 and 532.1 eV are assigned to the Co–O, Co–OH, and absorbed water species, correspondingly, [52, 66] indicating the preservation of Co–O for the Co$_3$O$_4$ core and the transformation into Co(OH)$_2$ species after OER durability test. Based on all these findings, the formation of Co(OH)$_2$ shell layers from MOF-74 is evidently confirmed, in which the in situ conversion of Co$_3$O$_4$@MOF-74 into Co$_3$O$_4$@Co(OH)$_2$ during the electrochemical process for oxygen evolution is consistent with the literature of other similar MOF systems. [52, 64]

In general, Co$_3$O$_4$ nanowire arrays on Ni foams are a good type of hard templates for the epitaxial growth of MOF layers on the nanowire surface because of the good conductivity and robust structure. [19] Several unique advantages can be highlighted from this epitaxial synthesis method, followed by the in situ conversion of MOF-74 into Co(OH)$_2$ (Scheme 1). Firstly, Co$_3$O$_4$ is not only the template and substrate to main the vertical structure, but also the metal source to supply Co ions to react with the ligand of H$_2$DOBDC for the formation of Co-based MOF-74 shell layers without using any other metal sources. This way, the good conductivity of Co$_3$O$_4$ as the material core can benefit the transfer of electrons from the electrolyte-electrode interface to the anode. Secondly, the high porosity of MOF-74 shell layers would facilitate the diffusion of alkaline electrolytes to promote its in situ electrochemical transformation into a non-compact structure. Once the Co(OH)$_2$ shell is transformed from the MOF-74 layer, there would be an enhanced cohesion between the Co(OH)$_2$ shell and the Co$_3$O$_4$ nanowire core, preventing its separation from the core to guarantee the good catalytic stability for OER. Thirdly, the highly-disordered, poor-crystallized and defect-rich Co(OH)$_2$ shell can provide abundant catalytically active sites for the adsorption of active species as well as the subsequent conversion of intermediates. [31, 42] Therefore, designing such metal oxide@MOF core-shell structures can make the most use out of their structural features and their derivatives of metal oxide@metal hydroxide by the in situ electrochemical conversion for the excellent and remarkable properties for OER. This presents a valuable insight into the MOF-based materials for electrocatalysis. It is also worth mentioning that, due to the differences and variations of intrinsic chemical properties, some MOF structures are more stable in electrolytes to preserve their initial structural and chemical features. [26, 27, 29] On the other hand, some MOFs may not be stable enough, suffering substantial changes in their structures when operating in alkaline solutions. [49–52] Thus, the post-reaction characterization and analysis of the structure should be carefully performed to evaluate any changes in crystalline and chemical structures during electrochemical processes. All these are essential to understand their
operation mechanisms of MOF-based materials and their nature as effective and stable electrocatalysts.

4. Conclusion

In summary, we have successfully prepared the Co3O4@MOF-74 core-shell structure using a template-assisted epitaxial growth method on Co3O4 nanowire arrays pre-fabricated on Ni foam substrates. The thickness of MOF shell layers can be simply regulated with a large range by controlling the solvothermal cycles onto the nanowires. The obtained Co3O4@MOF-74 samples exhibit remarkably enhanced catalytic properties for OER as compared with pure Co3O4 nanowire arrays on Ni foam. Particularly, the Co3O4@MOF-74 catalysts, grown with 2 deposition cycles, require a low over-potential of only 285 mV to realize a current density of 50 mA cm−2 together with a small Tafel slope of 43 mV/dec. Post-reaction characterizations further demonstrate the transformation of MOF-74 into cobalt hydroxide shell layers, where these in situ electrochemically converted cobalt hydroxides are functioned as the actual catalytic centers during the electrocatalytic oxygen generation reaction. Benefiting from these robust core-shell structures, the obtained Co3O4@Co(OH)2 electrocatalysts give the excellent durability and activity for OER. This work does not only provide a novel epitaxial growth method of preparing heterogeneous MOF structures, but also unveils the in situ transformation mechanism of MOF-based materials during electrochemical reactions, exhibiting a valuable insight into their effective and robust use as electrocatalysts.

5. Credit author statement

J. C. Ho and Y. Ma conceived and supervised the research. J. C. Ho, Y. Ma and W. Gao designed the experiments. J. C. Ho, W. Gao, W. Gou, R. Wei, and X. Bu performed the experiments and data analysis. J. C. Ho, W. Gao, and Y. Ma wrote the paper. All authors discussed the results and commented on the manuscript.

Declaration of Competing Interest

The authors declare no competing financial interest.

Acknowledgements

The authors acknowledged the financial support by the National Natural Science Foundation of China (Grant No. 21401148, 21902128), the Fundamental Research Funds for the Central Universities (3102019QD0406, 3102019JC005), the Science Technology and Innovation Committee of Shenzhen Municipality (Grant JCY20170818095520778) and the General Research Fund (CityU 11275916) and the Theme-based Research (T42–103/16-N) of the Research Grants Council of Hong Kong SAR, China.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.aptm.2020.100820.

Appendix A. Supplementary data

The following are Supplementary data to this article: additional SEM images, XPS spectra, FTIR spectra, CV curves, and Nyquist plots for Co3O4@MOF are exhibited.

References

D. oxidation, Q. ray work framework/MoS2

L. ganic

J. Jiang

Zhu

framework/Ni(OH)2

at active Chem.

Guo

Jia

Campbell

X.

J.

C.

Synergistic using MOF foam S.-Y.

for water

S.-Z.

J.

C.

Electrically

An

P.

L.

