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Using the massless Dirac–Weyl model of monolayer graphene, we study the effect of a negatively charged Coulomb
impurity on the low-lying spectra of single-electron magnetic dot and ring systems. The numerical results show that the
electron–hole symmetry in the spectra is broken by the Coulomb potential, and the original degenerate energy level lying
at zero energy becomes nondegenerate and splits into infinite discrete angular momentum states, which have positive
energies and thus are electron-like. For higher LLs, each has a reverse ordering of the energy levels when r202=a

2 is larger
than its critical value in the positive energy states for magnetic dot systems owing to the competition between the
Coulomb potential and the magnetic confinement.

1. Introduction

In recent years, graphene has generated much research
interest, both experimental and theoretical, according to a
review,1) since its isolation in laboratories.2,3) Owing to its
exceptionally high carrier mobility and structural stability
even without protection from the surroundings under ambient
conditions, it is regarded as a promising candidate material
for nanoscale electronic devices, as well as for high-density
memory devices and spintronic devices.

For electronic devices, the first consideration is the
confinement of electrons using either electric or magnetic
methods or both. For graphene, the incomplete electric
confinement of its massless carriers due to Klein tunneling4)

is a limitation in electronic device application, since carriers
can propagate via quasi-hole states and be transmitted
perfectly through a barrier. Magnetic confinement is a
possible alternative approach to overcoming this difficulty,
since the magnetic field deflects the trajectories of charged
carriers through the Lorentz force, trapping the carriers
within a small region.

In uniform fields, the low-lying spectra obtained using
the relativistic Dirac–Weyl (DW) model, as appropriate for
graphene, are different from those obtained using the
nonrelativistic Schrödinger model. For the former model,
low-lying Landau levels (LLs) with eigenenergies E / ffiffiffiffiffiffiffi

BN
p

where N is the LL index, are proportional to the square root
of the magnetic field B with unequal level spacings under a
fixed magnetic field, while, for the latter model, LLs with
E / BðN þ 1=2Þ are linear with equal spacings.

For the DW model, Martino and coworkers previously
gave an interesting proposal to confine electrons by
inhomogeneous magnetic fields.5–7) Various inhomogeneous
magnetic field configurations were subsequently suggested
to confine electrons, such as exponentially decaying fields,8)

non-zero fields in a circular dot,9) fields corresponding to
various potentials,10) circular step fields,11) Gaussian fields,12)

ring fields,13) and even the presence of Coulomb impurities
under uniform fields.14,15) In all these studies, discontinuous
and/or inhomogeneous magnetic fields were considered
focusing on the field dependence of the low-lying spectra
and the energy dependence of the transmission probability
through the magnetic barriers, as well as the electron states,
which include bound, quasi-bound and scattering states. They

conclude that electrons can be confined by magnetic barriers
in graphene. The doping of extrinsic impurities into these
systems is another important topic in the study of graphene
since it can modify the energy levels, which may largely
affect its electronic structure and optical properties. However,
studies of the above-mentioned configurations with impuri-
ties in more realistic situations are few.

In the present study, we modify the original DW equations
for monolayer graphene by adding a Coulomb interaction
term for a negative point charge at the center of the magnetic
dot or ring system into the two diagonal matrix elements of
the DW Hamiltonian, just like a negatively charged Coulomb
impurity in a realistic experimental situation. Owing to the
presence of these terms, the Hamiltonian can only be
simplified but not decoupled into two equations. Different
from that in a previous work,13) we first rearrange the two
nondiagonal matrix elements separately and consider that
part with the raising operator �̂þ

0 and the lowering operator
�̂�
0 as the unperturbed Hamiltonian [see Eq. (4)]. The

corresponding eigenvectors for these two operators are
exactly the same as the two-dimensional (2D) harmonic
product basis states, which are used to form the model space.
The low-lying spectra of the single-electron magnetic ring
and dot systems are then calculated using the bases. Finally,
we compare and analyse our overall numerical results for
these two systems with and without an impurity. Note that
previous experimental studies16–18) of the effect of magnetic
field modulation on a nonrelativistic two-dimensional
electron gas (2DEG) may be used to experimentally achieve
our theoretical findings.

2. Theory

The massless DW Hamiltonian describing a single electron
bound to an on-center negatively charged Coulomb impurity
in a 2D monolayer graphene based magnetic dot or ring
formed by a magnetic field is14,15)

Ĥ ¼ vF� � ðPþ eAÞ þ e2

4��r
I; ð1Þ

where vF is the electron’s Fermi velocity instead of the
photon’s in the conventional Dirac equation. � ¼ ð�x; �yÞ and
I are the 2� 2 Pauli matrices in the pseudospin space, and
the identity matrix, respectively. P and A are the momentum
operator and the vector potential in the 2D space,
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respectively. Both the diagonal matrix elements for the last
term of the DW Hamiltonian denote the Coulomb interaction
between the electron and the on-center impurity. The positive
sign of the Coulomb interaction is for repulsion. Note that,
for mathematical simplicity, both the electron–electron
interaction and the Zeeman term for the coupling of the
electron spin and the magnetic field are neglected.

In realistic experimental situations, the magnetic ring is
formed by an inhomogeneous magnetic field: the magnetic
field perpendicular to the xy plane within the ring region is
zero, i.e., BðrÞ ¼ 0 for r01 � r � r02, and a constant B outside
it, i.e., BðrÞ ¼ B0êz, where êz is the unit vector in the
z-direction, and r01 and r02 are the inner and outer radii of the
magnetic ring, respectively. Such a magnetic field profile can
be realized by placing the same shape of thin super-
conducting material below the transition temperature on top
of the graphene so that the magnetic field is expelled from the
superconducting material, leading to an inhomogeneous field
profile on the graphene. For circular symmetry, by using the
relationship of the magnetic flux �ðrÞ [¼ 2�rAðrÞ] and the
area integral of BðrÞ, the corresponding vector potential A in
the polar coordinate representation is then given by19,20)

A ¼

B0

2
êz � r for 0 � r < r01,

B0r
2
01

2r2
êz � r for r01 � r � r02,

B0ðr2 � ðr202 � r201ÞÞ
2r2

êz � r for r > r02.

8>>>>>>><
>>>>>>>:

ð2Þ

When the inner radius r01 approaches zero, the resulting
vector potential can be reduced to the case of a magnetic dot
with the radius r02.

In order to calculate the eigenenergy of the whole
single electron system by numerical diagonalization, the
Hamiltonian Eq. (1) is decomposed into two parts:

Ĥ ¼ Ĥ0 þ V̂: ð3Þ
The unperturbed Hamiltonian Ĥ0 as a 2� 2 matrix is

extracted from Ĥ such that Ĥ0 describes an electron moving
in the absence of the Coulomb impurity under a uniform field
B0, which can be expressed as

Ĥ0 ¼ vF
0 �̂�

0

�̂þ
0 0

 !
; ð4Þ

with

�̂�
0 ¼ �j expð�j�Þ �h�

@

@r
þ lh�

r
þ erB0

2

� �
: ð5Þ

Ĥ0 can be solved analytically, having the well-known 2D
harmonic product basis states, which are the two components
of the spinor eigenfunctions. With the radial quantum number
n, the orbital angular momentum lh� , and the imaginary unit j,
the two-component spinor can be expressed as

�T
nl ¼ ð�N�1;l�1 j�N;lÞ; ð6Þ

where the nonnegative integer LL index is N [� nþ
ðlþ jljÞ=2] and

�N;l ¼ 1=
ffiffiffiffiffiffi
2�

p
ejl�

n!

a2ðnþ jljÞ!
� �1=2

� ðr=
ffiffiffi
2

p
aÞjljLjljn ðr2=2a2Þe�r2=4a2 : ð7Þ

The corresponding two eigenvalues are respectively EN;l ¼
þN

1
2 and �N

1
2 in energy unit of h�! (� ffiffiffi

2
p

vFh�=a). In Eq. (7),
ª is the azimuthal angle on the xy plane. Ljljn and a
(� ffiffiffiffiffiffiffiffiffiffiffiffi

h�=eB0

p
) are the associated Laguerre polynomials and

magnetic length, respectively. Note that, as can be seen from
the eigenvalues for uniform fields, �̂�

0 and �̂þ
0 can be

regarded as the lowering and raising operators, respectively,
i.e., �̂þ

0 �N�1;l�1 ¼
ffiffiffiffi
N

p
�N;l and �̂�

0 �N;l ¼
ffiffiffiffi
N

p
�N�1;l�1. From

Eq. (6), the first spinor component is set to zero for the LL
index N ¼ 0, since it is a nonnegative integer. For the LL,
note that each bulk LL under a uniform magnetic field is
degenerate and consists of infinite quantum states with
various orbital angular momenta (l) depending on their LL
index N. In order to differentiate them from the bulk LLs,
under nonuniform magnetic fields, these discrete quantum
states split from the bulk LL are called the angular
momentum states.

The 2� 2 matrix block of the remaining part of the
Hamiltonian V̂ from Eq. (3), the residual potential, can then
be expressed as

V̂ ¼ V̂coul V̂þ

V̂� V̂coul

 !
; ð8Þ

in which the four matrix elements are given by

V̂coul ¼ C
1

r
; ð9Þ

V̂� ¼ �j expð�j�Þ

�

0 for 0 � r < r01,

� 1

2
ffiffiffi
2

p
r
ðr2 � r201Þ for r01 � r � r02,

� 1

2
ffiffiffi
2

p
r
ðr202 � r201Þ for r > r02,

8>>>>><
>>>>>:

ð10Þ

where, in the diagonal term [Eq. (9)], the Coulomb parameter
C represents the interaction strength of the electron with the
on-center impurity and is given by

C ¼ e2

2
ffiffiffi
2

p
�vFh

ð11Þ

in unit of the magnetic length. The phase factors expð�j�Þ
are cancelled off during the integration of the corresponding
matrix elements, since the orbital angular momenta of the two
spinor components involved differed by one [see Eq. (6)].

The above formalism, as a whole, is different from that of
the impurity-free case.13) Several notes worth mentioning are
that, (a) since the Hamiltonian, a 2� 2 matrix due to the
presence of an impurity cannot decouple into two separate
equations, the basis vectors have to be used in pairs in the
model space [see Eq. (6)] in the direct diagonalization. (b)
The perturbation terms due to the inhomogeneous magnetic
field V̂� are very different from those in the impurity-free
case [see Eq. (7) in Ref. 13], since in the latter case, taking
the square of the Hamiltonian is required for decoupling the
equations before the diagonalization.

In the numerical calculation, the accuracy of the solutions
obtained using diagonalization depends on the size of the
model space. However, the larger the size of the model space
used to obtain reliable results with satisfactory convergence,
the lower the computational efficiency is. In our present
work, the model space for the 2� 2 matrix Hamiltonian
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[Eq. (8)] has 30 pairs of the low-energy eigenstates for a
particular orbital angular momentum, l.

3. Discussion and Conclusions

Our numerical results are limited to the quantum states
0 � n � 2 and jlj � 3, which still show major differences in
features between the magnetic dot and the magnetic ring,
even though higher quantum states are not considered. In
actual diagonalization for a particular l, in the case of no
impurities, pairs of eigenenergies of the electron and the hole
states can be easily identified since they are in pairs with
opposite signs. However, in the presence of an impurity, the
eigenvalues for the corresponding lowest quantum states
ðn; lÞ have to be extracted with much care, since the whole
low-lying spectra shift upward owing to the repulsive
impurity. The levels in the spectra still appear in pairs, but
are different not just by having opposite signs, owing to the
breaking of the electron–hole symmetry. In all the figures, the
states are labeled ðn; lÞ�, for which the superscripts “�”

represent the electron (or positive energy) and hole (or
negative energy) states, respectively, while the original highly
degenerate zero-energy states as exceptions are denoted by
the superscript “0”. Using the impurity-free case13) (see
Fig. 1) as reference, Figs. 2, 3, and 4 show how the low-lying
spectra change in both the (a) magnetic dot and (b) ring
systems, when the Coulomb interaction strength between the
electron and on-center impurity increases.

We discuss our numerical results primarily on the basis of
the following four important observations of the underlying
physics. (1) The effect of the magnetic field is to push the
electron toward the center of the system, particularly as a
result of the factor expð�r2=4a2Þ in Eq. (7). (2) The average
orbit size for an electron moving around the center is given
by the mean square orbit radius hr2i / 2nþ jlj þ 1 ¼
2N � lþ 1. For a certain field, the smaller the value of ¹l
for a given LL, the closer the electron orbit is to its center. (3)
Different angular momentum states exist within the dot or
ring region under different magnetic fields, causing the
angular momentum states to deviate from their corresponding
bulk LLs. (4) For a repulsive impurity, there is an increase
in the eigenenergy and a shift of the low-lying spectra
upward.

Let us now consider the zero-energy states for both the
magnetic dot and ring systems. Figures 2 to 4 show the low-
lying spectra in the case of a negatively charged impurity. As
can be clearly seen, the originally highly degenerate LL
(N ¼ 0), different from those of the impurity-free cases in
Fig. 1,12,13) becomes nondegenerate and splits into discrete
angular momentum states or electron-like states. When the
Coulomb interaction increases, these angular momentum
states shift upward and move further away from the zero bulk
LL, owing to the electron-impurity repulsion. As shown in
these figures, the ð0; 0Þ0 state is much higher than its
neighbouring states; this is because this state has no
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Fig. 1. (Color online) Low-lying spectra of (a) a magnetic dot and (b) a magnetic ring as functions of 1=a2, which is proportional to the magnetic field
(/ B0), without impurity, i.e., Coulomb parameter C ¼ 0, noting that several low bulk LLs (up to N ¼ 4 from zero) denoted by solid curves in red are drawn
for comparison.
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centrifugal barrier and the electron is much closer to the
center of the impurity in this state than in the other angular
momentum states. As a result, the electron becomes more
unstable, and the ð0; 0Þ0 state thus has the highest energy
among the lowest LL, and ð0;�3Þ0 is left as the ground state.
Furthermore, the stronger the magnetic-field confinement, the
closer the electron is pushed toward the on-center impurity,
leading to the increase of the electron-impurity repulsion
which shifts these angular momentum states further upward.

Now, we focus on the first LL (N ¼ 1). When the
Coulomb interaction is sufficiently weak (C ¼ 0:05), as in
Fig. 2, the qualitative features of the first LL (N ¼ 1) for both
the magnetic dot and ring systems are similar to those in the
impurity-free cases,13) only having small shifts upward for
both positive and negative energy states. In the case of the
magnetic ring [Fig. 2(b)], for sufficiently weak fields, the
angular momentum states are in general far away from the
magnetic ring region, and the electron moves in a uniform
field outside the ring region; therefore, the angular momen-
tum states resemble the bulk LL and their energies are close
the bulk LL energies. As the magnetic field increases, the
confinement effect of the magnetic field, which resembles
that of a harmonic potential, pushes the electron closer to
the ring region, where the magnetic field is zero. As a
consequence, the electron energy is lower than the bulk LL
energy. When the magnetic field is further increased, the field
confinement effect pushes the electron closer to the center of
the ring, where the magnetic field is nonzero, and the electron
moves in a uniform magnetic field again. The electron energy
level then moves towards the bulk LL. In other words, when

the magnetic field gradually increases, the eigenenergies for
the angular momentum states start to deviate from the bulk
LL at different magnetic fields and then move towards the
bulk LL again at some larger fields. This shift in the
eigenenergies leads to angular momentum state transitions,
i.e.,

ð0; 1Þ �����!
	1:632

	1:713 ð1; 0Þ �����!
	3:664

	3:416 ð1;�1Þ

�����!
	5:495

	5:430 ð1;�2Þ �����!
	7:422

	7:397 ð1;�3Þ;
where the magnetic fields r201=a

2 just above and below the
arrows indicate the transition points between two angular
momentum states for both the positive- and negative-energy
states, respectively. In Fig. 2(b), since we express the
magnetic field in units of the inverse of the square of the
inner radius of the ring (1=r201), it can be readily deduced that
the above transition points will shift toward smaller magnetic
fields when r01 is increased and the ring region moves further
away from the ring center. In the case of the magnetic dot
[Fig. 2(a)], inside the dot, the magnetic field is zero and
therefore the eigenenergies for all the angular momentum
states simply move away from the bulk LL when the
magnetic field is increased, without any angular momentum
state transitions. Since the magnetic field is expressed in units
of the inverse of the square of the dot radius (1=r202), it can be
expected that, the larger the dot size, the weaker the magnetic
field is required to push the electron deep into the zero-field
dot region.

When the Coulomb interaction is increased to C ¼ 0:5 for
the magnetic dot with an impurity [see Fig. 3(a)], for the
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Fig. 4. (Color online) Same as those in Fig. 1 but with C ¼ 1.
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positive energy states, there exists a sharp point of level
crossing between the states ð1; 0Þþ, ð1;�1Þþ, ð1;�2Þþ, and
ð1;�3Þþ at the magnetic field r202=a

2 	 4:5. In the electron-
impurity interacting systems, there are two interaction
energies with opposite effects on the ordering of the angular
momentum states of a given LL; one is Coulomb force of the
on-center impurity and the other is the inhomogeneous
magnetic field, which compete with each other. Below a
critical field, i.e., r202=a

2 < 4:5, the level ordering is just
similar to that of the zero LL in which the Coulomb effect is
dominant. When the field exceeds this critical value, the level
ordering of the angular momentum states changes to that of
the impurity-free dot. The level crossing effect can also be
observed in the magnetic ring [Fig. 3(b)], but it is difficult to
define a single critical point owing to a more complicated
field profile. For the negative energy states, the level ordering
or crossing features with critical points found in the positive
energy states are not observed for either the dot or ring
system. This is because, the hole impurity interaction energy
is negative, having effects just opposite to those of the
positive energy states.

When the Coulomb interaction is increased to C ¼ 1

[Fig. 4(a)], the critical point will shift to r202=a
2 > 6 (not

shown in the figure) for the magnetic dot with an impurity,
but features similar to those in cases of weak Coulomb
interaction can still be observed in the magnetic ring with the
impurity [Fig. 4(b)]. On the whole, the stronger the Coulomb
interaction, the larger the value of the critical point is. Note
that, both the states ð0; 1Þ� and ð1; 0Þ�, originally degenerate
in the first LL (N� ¼ 1), now increase in eigenenergies to
that above the zero bulk LL (N ¼ 0) when the Coulomb

interaction is sufficiently strong, as can be seen in the results
for C ¼ 1 in Fig. 4 for both the magnetic dot and ring
systems.

Finally, in order to see the effect of only the Coulomb
potential on the low-lying spectra, we define the binding
energy �Eðn;lÞ� as the difference in the energy between the
states with and without the Coulomb potential. This energy
can be used as an indicator of the change of the electron
position since the Coulomb potential is inversely proportional
to r. Using the dot and ring systems with the Coulomb
interaction parameter C ¼ 0:5 as examples, we plot their
binding energies in Figs. 5(a) and 5(b), respectively. When
the magnetic field increases, the electron is pushed towards
the on-center impurity. From the figures, we see that for the
negative angular momentum states the binding energies in
general start to increase and finally reach some constant
values, particularly for the magnetic ring system in Fig. 5(b).
Apart from the effect of the strong Coulomb potential, the
main reason for the behavior is that, the magnetic field at the
center region tends to repel the electron in the ring region with
a zero magnetic field from entering it. Furthermore, two more
notes for the binding energies to be made here are that (a) the
negative energy states have a higher binding energy than the
positive energy ones, since the negatively charged impurity
attracts the hole in the negative energy states causing a
stronger Coulomb potential effect, and (b) the lower angular
momentum states jlj have a higher binding energy since they
are much closer to the center of the system and nearer to the
on-center impurity according to the expression of orbit radius.

In summary, using direct diagonalization, the low-lying
spectra of single electron magnetic dot and ring systems with
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an on-center negatively charged Coulomb impurity have been
calculated and studied. We give several concluding remarks
drawn from our numerical results as follows.
1. In the presence of an impurity, the electron–hole

symmetrical structure for all the spectra is broken due
to the Coulomb interaction between the electron and the
impurity, and the original zero energy state becomes
nondegenerate and splits into discrete angular momen-
tum states or electron-like states.

2. For the positive energy states of neighboring higher
LLs, the effect of the impurity on the ordering of low-
lying levels below certain magnetic fields becomes
important, when the Coulomb interaction is sufficiently
strong, regardless of the magnetic field profile.

3. From the above analysis, when a negatively charged
impurity is replaced by a positively charged one, it can
be expected that, the spectra for the positive energy
states and negative energy states are simply reversed,
and the zero energy states are converted into hole-like
states.
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